Switch-like responses arising from bistability have been linked to cell signaling processes and memory. Revealing the shape and properties of the set of parameters that lead to bistability is necessary to understand the underlying biological mechanisms, but is a complex mathematical problem. We present an efficient approach to determine a basic topological property of the parameter region of multistationary, namely whether it is connected or not. The connectivity of this region can be interpreted in terms of the biological mechanisms underlying bistability and the switch-like patterns that the system can create. We provide an algorithm to assert that the parameter region of multistationarity is connected, targeting reaction networks with mass-action kinetics. We show that this is the case for numerous relevant cell signaling motifs, previously described to exhibit bistability. However, we show that for a motif displaying a phosphorylation cycle with allosteric enzyme regulation, the region of multistationarity has two distinct connected components, corresponding to two different, but symmetric, biological mechanisms. The method relies on linear programming and bypasses the expensive computational cost of direct and generic approaches to study parametric polynomial systems. This characteristic makes it suitable for mass-screening of reaction networks.
翻译:从可变性产生的类似切换反应已经与细胞信号过程和内存相联系。为了理解基本生物机制,有必要揭示导致可变性的一组参数的形状和特性,这是理解基本生物机制所必须的,但是一个复杂的数学问题。我们提出了一个有效的方法,以确定多静止参数区域的基本地形属性,即该参数区域是否相连。这个区域的连通性可以从可变性和系统可以创造的类似切换模式的生物机制的角度来解释。我们提供了一种算法,以断言多静止的参数区域是相连的,以大规模行动动能反应网络为对象。我们表明,许多相关的细胞示意图信号都是如此,先前被描述为显示可变性的。然而,我们表明,对于显示具有全态酶调节的磷化循环的模型而言,多静止性区域有两个不同的连接组成部分,对应两个不同但对称的生物机制。该方法依赖于线性编程和绕过昂贵的计算计算成本,即直接和一般的反动反应网络的计算成本。这一方法使该模型成为用于研究可变异性微反应网络的特征的模型。