Decoding experimental variables from brain imaging data is gaining popularity, with applications in brain-computer interfaces and the study of neural representations. Decoding is typically subject-specific and does not generalise well over subjects. Here, we investigate ways to achieve cross-subject decoding. We used magnetoencephalography (MEG) data where 15 subjects viewed 118 different images, with 30 examples per image. Training on the entire 1s window following the presentation of each image, we experimented with an adaptation of the WaveNet architecture for classification. We also investigated the use of subject embedding to aid learning of subject variability in the group model. We show that deep learning and subject embedding are crucial to closing the performance gap between subject and group-level models. Importantly group models outperform subject models when tested on an unseen subject with little available data. The potential of such group modelling is even higher with bigger datasets. Furthermore, we demonstrate the use of permutation feature importance to gain insight into the spatio-temporal and spectral information encoded in the models, enabling better physiological interpretation. All experimental code is available at https://github.com/ricsinaruto/MEG-group-decode.
翻译:从大脑成像数据中解析实验变量的做法越来越受欢迎,在脑计算机界面和神经表征研究中应用了各种应用。解说通常是针对特定主题的,并且没有广泛概括于各个主题。在这里,我们调查了实现跨主题解码的方法。我们使用了磁脑物理学(MEG)数据,其中15个主题查看了118个不同的图像,每个图像有30个示例。在展示每个图像后对整个一窗口进行了培训,我们实验了WaveNet结构进行分类的调整。我们还调查了将对象嵌入帮助学习组模型中主题变异性的学生的使用情况。我们显示深学习和嵌入主题对于缩小主题模型和组级模型之间的性能差距至关重要。在用少量数据对一个无形主题进行测试时,关键组模型超越了主题模型。这种组建模的潜力在更大的数据集中甚至更高。此外,我们演示了使用透析特征的重要性,以深入了解模型中的波波波波波流和光谱信息,从而能够进行更好的生理解释。所有实验代码都可在 http://giustoprodu-minalb. /EGricorgroup.