Developing deep neural networks to generate 3D scenes is a fundamental problem in neural synthesis with immediate applications in architectural CAD, computer graphics, as well as in generating virtual robot training environments. This task is challenging because 3D scenes exhibit diverse patterns, ranging from continuous ones, such as object sizes and the relative poses between pairs of shapes, to discrete patterns, such as occurrence and co-occurrence of objects with symmetrical relationships. This paper introduces a novel neural scene synthesis approach that can capture diverse feature patterns of 3D scenes. Our method combines the strength of both neural network-based and conventional scene synthesis approaches. We use the parametric prior distributions learned from training data, which provide uncertainties of object attributes and relative attributes, to regularize the outputs of feed-forward neural models. Moreover, instead of merely predicting a scene layout, our approach predicts an over-complete set of attributes. This methodology allows us to utilize the underlying consistency constraints among the predicted attributes to prune infeasible predictions. Experimental results show that our approach outperforms existing methods considerably. The generated 3D scenes interpolate the training data faithfully while preserving both continuous and discrete feature patterns.
翻译:开发深神经网络以生成 3D 场景是神经合成与建筑 CAD 、 计算机图形以及虚拟机器人培训环境直接应用的一个根本问题。 这项任务具有挑战性, 因为 3D 场景呈现了多种模式, 从连续的形态, 如对象大小和形状对立之间的相对构成, 到离散的形态, 例如有对称关系的物体的发生和共同出现。 本文引入了一种新的神经场景合成方法, 能够捕捉 3D 场景的不同特征模式。 我们的方法结合了神经网络和常规场景合成方法的强度。 我们使用从培训数据中学得的参数先前分布, 提供了对象属性和相对属性的不确定性, 使进取神经模型的输出正规化。 此外, 我们的方法不仅预测了场景布局, 还预测了一组过于完整的属性。 这种方法使我们能够利用预测的属性之间的内在一致性限制来进行不可行的预测。 实验结果显示, 我们的方法大大超越了现有方法。 生成了 3D 场景对培训模式进行了忠实的内插。