Given a large dataset for training, GANs can achieve remarkable performance for the image synthesis task. However, training GANs in extremely low data regimes remains a challenge, as overfitting often occurs, leading to memorization or training divergence. In this work, we introduce SIV-GAN, an unconditional generative model that can generate new scene compositions from a single training image or a single video clip. We propose a two-branch discriminator architecture, with content and layout branches designed to judge internal content and scene layout realism separately from each other. This discriminator design enables synthesis of visually plausible, novel compositions of a scene, with varying content and layout, while preserving the context of the original sample. Compared to previous single-image GANs, our model generates more diverse, higher quality images, while not being restricted to a single image setting. We show that SIV-GAN successfully deals with a new challenging task of learning from a single video, for which prior GAN models fail to achieve synthesis of both high quality and diversity.


翻译:鉴于培训需要大量数据集,GANs可以在图像合成任务中取得显著的成绩。然而,在极低的数据系统中培训GANs仍是一项挑战,因为往往会出现过度调整,导致记忆化或培训差异。在这项工作中,我们引入了SIV-GAN(一种无条件的基因化模型),它可以从单一的培训图像或一个视频剪辑中产生新的场景构成。我们提出了一个双层的区分器结构,其内容和布局分支旨在分别判断内部内容和场景布局。这种区分器设计能够合成一个有不同内容和布局的场景的视觉、新颖的外观构成,同时保留原始样本的背景。与以前的单图像GANs相比,我们的模式产生更多样、更高质量的图像,而不限于单一的图像设置。我们显示SIV-GAN成功地处理了从单一视频中学习的新的挑战性任务,因为之前的GAN模型无法实现高质量和多样性的合成。

0
下载
关闭预览

相关内容

最新《自监督表示学习》报告,70页ppt
专知会员服务
85+阅读 · 2020年12月22日
最新【深度生成模型】Deep Generative Models,104页ppt
专知会员服务
69+阅读 · 2020年10月24日
【论文笔记】通俗理解少样本文本分类 (Few-Shot Text Classification) (1)
深度学习自然语言处理
7+阅读 · 2020年4月8日
已删除
将门创投
11+阅读 · 2019年7月4日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【泡泡前沿追踪】跟踪SLAM前沿动态系列之IROS2018
泡泡机器人SLAM
29+阅读 · 2018年10月28日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
Arxiv
0+阅读 · 2021年12月13日
FIGR: Few-shot Image Generation with Reptile
Arxiv
5+阅读 · 2019年1月8日
VIP会员
相关VIP内容
最新《自监督表示学习》报告,70页ppt
专知会员服务
85+阅读 · 2020年12月22日
最新【深度生成模型】Deep Generative Models,104页ppt
专知会员服务
69+阅读 · 2020年10月24日
相关资讯
【论文笔记】通俗理解少样本文本分类 (Few-Shot Text Classification) (1)
深度学习自然语言处理
7+阅读 · 2020年4月8日
已删除
将门创投
11+阅读 · 2019年7月4日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【泡泡前沿追踪】跟踪SLAM前沿动态系列之IROS2018
泡泡机器人SLAM
29+阅读 · 2018年10月28日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
Top
微信扫码咨询专知VIP会员