A polynomial homotopy is a family of polynomial systems, typically in one parameter $t$. Our problem is to compute power series expansions of the coordinates of the solutions in the parameter $t$, accurately, using multiple double arithmetic. One application of this problem is the location of the nearest singular solution in a polynomial homotopy, via the theorem of Fabry. Power series serve as input to construct Pad\'{e} approximations. Exploiting the massive parallelism of Graphics Processing Units capable of performing several trillions floating-point operations per second, the objective is to compensate for the cost overhead caused by arithmetic with power series in multiple double precision. The application of Newton's method for this problem requires the evaluation and differentiation of polynomials, followed by solving a blocked lower triangular linear system. Experimental results are obtained on NVIDIA GPUs, in particular the RTX 2080, P100 and V100. Code generated by the CAMPARY software is used to obtain results in double double, quad double, and octo double precision. The programs in this study are self contained, available in a public github repository under the GPL-v3.0 License.
翻译:多元同族体是多元同族体的组合, 通常在一个参数 $t$ 中。 我们的问题是精确地计算参数 $t 中解决方案坐标的电源序列扩展, 使用多重双重算术。 这个问题的一个应用是通过法布里的理论体, 将最接近的单一解决方案应用在一个多边同族体中的位置。 电源序列是用于构建 Pad\ { { e} 近似值的输入。 探索能够执行数万亿个浮点操作的图形处理器的大规模平行功能, 目标是用多个双精度的计算来补偿由数个电源序列引起的成本间接成本。 牛顿方法的运用要求对多元同族体进行评估和区分, 并随后解决一个阻隔的较低三角线性系统。 在 VIVDIA GPU, 特别是 RTX 2080, P100 和 V100 上获得实验结果。 CAMPARI 软件生成的代码, 用于以双倍、 双倍 和 octo 双精度的 GPL3 。 本 PLALA 中包含的软件。