This chapter addresses important steps during the quality assurance and control of RWD, with particular emphasis on the identification and handling of missing values. A gentle introduction is provided on common statistical and machine learning methods for imputation. We discuss the main strengths and weaknesses of each method, and compare their performance in a literature review. We motivate why the imputation of RWD may require additional efforts to avoid bias, and highlight recent advances that account for informative missingness and repeated observations. Finally, we introduce alternative methods to address incomplete data without the need for imputation.


翻译:本章论述在保障和控制社署质量方面的重要措施,尤其强调识别和处理缺失的值;对通用统计和机器估算学习方法进行温和的介绍;讨论每种方法的主要优点和缺点,并在文献审查中比较这些方法的成绩;我们提出为什么在计算社署时可能需要进一步努力避免偏见,并着重说明最近取得的进展,说明缺乏信息的情况和反复观察;最后,我们采用替代方法,处理不完全的数据,而无需估算数据。

0
下载
关闭预览

相关内容

多标签学习的新趋势(2020 Survey)
专知会员服务
44+阅读 · 2020年12月6日
数据科学导论,54页ppt,Introduction to Data Science
专知会员服务
42+阅读 · 2020年7月27日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
82+阅读 · 2020年7月26日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Arxiv
0+阅读 · 2021年12月31日
Arxiv
7+阅读 · 2020年10月9日
VIP会员
相关VIP内容
多标签学习的新趋势(2020 Survey)
专知会员服务
44+阅读 · 2020年12月6日
数据科学导论,54页ppt,Introduction to Data Science
专知会员服务
42+阅读 · 2020年7月27日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
82+阅读 · 2020年7月26日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Top
微信扫码咨询专知VIP会员