This paper studies delayed stochastic algorithms for weakly convex optimization in a distributed network with workers connected to a master node. More specifically, we consider a structured stochastic weakly convex objective function which is the composition of a convex function and a smooth nonconvex function. Recently, Xu et al. 2022 showed that an inertial stochastic subgradient method converges at a rate of $\mathcal{O}(\tau/\sqrt{K})$, which suffers a significant penalty from the maximum information delay $\tau$. To alleviate this issue, we propose a new delayed stochastic prox-linear ($\texttt{DSPL}$) method in which the master performs the proximal update of the parameters and the workers only need to linearly approximate the inner smooth function. Somewhat surprisingly, we show that the delays only affect the high order term in the complexity rate and hence, are negligible after a certain number of $\texttt{DSPL}$ iterations. Moreover, to further improve the empirical performance, we propose a delayed extrapolated prox-linear ($\texttt{DSEPL}$) method which employs Polyak-type momentum to speed up the algorithm convergence. Building on the tools for analyzing $\texttt{DSPL}$, we also develop improved analysis of delayed stochastic subgradient method ($\texttt{DSGD}$). In particular, for general weakly convex problems, we show that convergence of $\texttt{DSGD}$ only depends on the expected delay.


翻译:

0
下载
关闭预览

相关内容

南大《优化方法 (Optimization Methods》课程,推荐!
专知会员服务
78+阅读 · 2022年4月3日
NeurIPS 2021 | 用简单的梯度下降算法逃离鞍点
专知会员服务
23+阅读 · 2021年12月6日
专知会员服务
12+阅读 · 2021年10月12日
专知会员服务
19+阅读 · 2020年12月9日
【Google】梯度下降,48页ppt
专知会员服务
80+阅读 · 2020年12月5日
【KDD2020】最小方差采样用于图神经网络的快速训练
专知会员服务
27+阅读 · 2020年7月13日
【ICLR2020】五篇Open代码的GNN论文
专知会员服务
47+阅读 · 2019年10月2日
GNN 新基准!Long Range Graph Benchmark
图与推荐
0+阅读 · 2022年10月18日
量化金融强化学习论文集合
专知
13+阅读 · 2019年12月18日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
12+阅读 · 2021年3月24日
VIP会员
相关资讯
GNN 新基准!Long Range Graph Benchmark
图与推荐
0+阅读 · 2022年10月18日
量化金融强化学习论文集合
专知
13+阅读 · 2019年12月18日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员