In this paper, we design an information-based multi-robot source seeking algorithm where a group of mobile sensors localizes and moves close to a single source using only local range-based measurements. In the algorithm, the mobile sensors perform source identification/localization to estimate the source location; meanwhile, they move to new locations to maximize the Fisher information about the source contained in the sensor measurements. In doing so, they improve the source location estimate and move closer to the source. Our algorithm is superior in convergence speed compared with traditional field climbing algorithms, is flexible in the measurement model and the choice of information metric, and is robust to measurement model errors. Moreover, we provide a fully distributed version of our algorithm, where each sensor decides its own actions and only shares information with its neighbors through a sparse communication network. We perform intensive simulation experiments to test our algorithms on large-scale systems and physical experiments on small ground vehicles with light sensors, demonstrating success in seeking a light source.
翻译:在本文中,我们设计了一种基于信息的多机器人来源,以寻找算法,让一组移动传感器在本地范围测量的基础上定位并靠近单一来源;在算法中,移动传感器进行源的识别/定位,以估计源的位置;同时,它们迁移到新的地点,以尽量扩大关于传感器测量中所含源的信息;在这样做时,它们改进了源位置估计,并靠近源。我们的算法与传统的实地攀爬算法相比,在趋同速度方面更为优越,在测量模型和选择信息衡量标准方面十分灵活,并且对测量模型错误十分可靠。此外,我们提供了我们完全分布的算法版本,其中每个传感器决定自己的行动,并且仅通过一个稀少的通信网络与邻居共享信息。我们进行了密集的模拟实验,以测试大型系统的算法和对小型地面飞行器的轻传感器的物理实验,表明在寻找光源方面取得成功。