Consider an algorithm computing in a differential field with several commuting derivations such that the only operations it performs with the elements of the field are arithmetic operations, differentiation, and zero testing. We show that, if the algorithm is guaranteed to terminate on every input, then there is a computable upper bound for the size of the output of the algorithm in terms of the size of the input. We also generalize this to algorithms working with models of good enough theories (including for example, difference fields). We then apply this to differential algebraic geometry to show that there exists a computable uniform upper bound for the number of components of any variety defined by a system of polynomial PDEs. We then use this bound to show the existence of a computable uniform upper bound for the elimination problem in systems of polynomial PDEs with delays.
翻译:考虑在差异字段中计算算法, 使用几种通勤推算方法, 这样它与字段元素的唯一操作就是算术操作、 差异化和零测试。 我们显示, 如果算法保证每次输入都会终止, 那么从输入的大小来看, 算法输出的大小有一个可计算上限 。 我们还将它推广到使用足够好理论模型的算法( 例如, 包括差异字段) 。 然后, 我们将它应用到不同的代数几何测量方法, 以显示对于多式 PDE 系统定义的任何种类的组件数量, 存在可计算的统一上限。 然后我们用它来显示, 在多式 PDE 系统中, 存在一个可计算一致的上限, 用于消除问题。