Nonlinear differential equations model diverse phenomena but are notoriously difficult to solve. While there has been extensive previous work on efficient quantum algorithms for linear differential equations, the linearity of quantum mechanics has limited analogous progress for the nonlinear case. Despite this obstacle, we develop a quantum algorithm for dissipative quadratic $n$-dimensional ordinary differential equations. Assuming $R < 1$, where $R$ is a parameter characterizing the ratio of the nonlinearity and forcing to the linear dissipation, this algorithm has complexity $T^2 q~\mathrm{poly}(\log T, \log n, \log 1/\epsilon)/\epsilon$, where $T$ is the evolution time, $\epsilon$ is the allowed error, and $q$ measures decay of the solution. This is an exponential improvement over the best previous quantum algorithms, whose complexity is exponential in $T$. While exponential decay precludes efficiency, driven equations can avoid this issue despite the presence of dissipation. Our algorithm uses the method of Carleman linearization, for which we give a novel convergence theorem. This method maps a system of nonlinear differential equations to an infinite-dimensional system of linear differential equations, which we discretize, truncate, and solve using the forward Euler method and the quantum linear system algorithm. We also provide a lower bound on the worst-case complexity of quantum algorithms for general quadratic differential equations, showing that the problem is intractable for $R \ge \sqrt{2}$. Finally, we discuss potential applications, showing that the $R < 1$ condition can be satisfied in realistic epidemiological models and giving numerical evidence that the method may describe a model of fluid dynamics even for larger values of $R$.


翻译:非线性差价方程式不同现象,但很难解决。虽然在线性差异方程式有效量算法方面,数量力的线性工序在以往大量工作,但非线性方程式的类似进展有限。尽管存在这一障碍,但我们为消散的二次方程式美元平面普通差异方程式开发了量值算法。假设1美元 < 1美元,美元是衡量非线性比率和线性消散的参数,而美元是衡量非线性比率的参数。虽然指数衰减无法提高效率,但这种直线性方程式可以避免这一问题,尽管存在消散,但(log T, rality n,\log 1/ 1/ epsilon)/\ epslon$, 美元是进化时间, 美元是允许错误, 美元是衡量解决方案衰减的。 这是比前一最佳量量方程算法的一个指数性改进, 其复杂性以$T$计算。 我们的指数衰减, 驱动方程式的量性方程式将显示这一问题, 我们的直线性平面性平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面法,, 也说明我们平面平面平面平面平面平面平面平面平基平基平基的平基。

0
下载
关闭预览

相关内容

不可错过!华盛顿大学最新《生成式模型》课程,附PPT
专知会员服务
63+阅读 · 2020年12月11日
专知会员服务
44+阅读 · 2020年10月31日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
109+阅读 · 2020年5月15日
深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Adam那么棒,为什么还对SGD念念不忘
人工智能头条
6+阅读 · 2018年3月25日
神经网络学习率设置
机器学习研究会
4+阅读 · 2018年3月3日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
6+阅读 · 2018年10月3日
Arxiv
3+阅读 · 2017年12月1日
VIP会员
相关资讯
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Adam那么棒,为什么还对SGD念念不忘
人工智能头条
6+阅读 · 2018年3月25日
神经网络学习率设置
机器学习研究会
4+阅读 · 2018年3月3日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员