One of the main concerns of silviculture and forest management focuses on finding fast, cost-efficient and non-destructive ways of measuring wood properties in standing trees. This paper presents an R package \verb+fiberLD+ that provides functions for estimating tree fiber length distributions in the standing tree based on increment core samples. The methods rely on increment core data measured by means of an optical fiber analyzer (OFA) or measured by microscopy. Increment core data analyzed by OFAs consist of the cell lengths of both cut and uncut fibers (tracheids) and fines (such as ray parenchyma cells) without being able to identify which cells are cut or if they are fines or fibers. The microscopy measured data consist of the observed lengths of the uncut fibers in the increment core. A censored version of a mixture of the fine and fiber length distributions is proposed to fit the OFA data, under distributional assumptions. Two choices for the assumptions of the underlying density functions of the true fiber (fine) lengths of those fibers (fines) that at least partially appear in the increment core are considered, such as the generalized gamma and the log normal densities. Maximum likelihood estimation is used for estimating the model parameters for both the OFA analyzed data and the microscopy measured data.
翻译:硅栽培和森林管理的主要关注之一侧重于寻找快速、具有成本效益和非破坏性的方法,测量活性树木中的木质特性。本文件展示了一个 R 包 包\ verb+feiberLD+,该包提供功能,根据增量核心样本估算常立树树的树纤维长度分布; 方法依靠光纤分析仪(OFA)或微缩分析测量的增量核心数据; 由OFA分析的增量核心数据包括切割和未切割纤维(tracheids)和罚款(如ray parenchyma 细胞)的细胞长度,而不能确定哪些细胞被切除,或者它们是罚款或纤维。 微镜测量的数据包括加量核心中未切割纤维的观察长度。 提议了精细和纤维长度分布的混合审查版本,以适应 OFA数据分布式假设。 两种假设这些纤维(fine)和罚款(例如ray parenchles cell) 的底密度值的细胞长度的细胞长度,无法确定哪些细胞被切,或者它们是罚款或纤维纤维纤维纤维纤维纤维纤维纤维纤维的细,这些是纤维的缩或纤维的缩纤维的缩纤维的底值。 的底值的底值的精确值,其估计值的正常值的概率值的概率值的概率值至少值数据被分析数据被考虑。