We introduce new goodness-of-fit tests and new confidence bands for distribution functions motivated by multi-scale methods of testing and based on laws of the iterated logarithm for the normalized uniform empirical process $\mathbb{U}_n (t)/\sqrt{t(1-t)}$ and its natural limiting process, the normalized Brownian bridge process $\mathbb{U}(t)/\sqrt{t(1-t)}$. The new goodness-of-fit tests and confidence bands refine the procedures of Berk and Jones (1979) and Owen (1995). Roughly speaking, the high power and accuracy of the latter procedures in the tail regions of distributions are essentially preserved while gaining considerably in the central region. The goodness-of-fit tests perform well in signal detection problems involving sparsity, as in Donoho and Jin (2004) and Jager and Wellner (2007), but also under contiguous alternatives. Our analysis of the confidence bands sheds new light on the influence of the underlying $\phi$-divergences.
翻译:我们引入了由多种规模测试方法驱动的新的 " 最佳测试 " 和新的分配功能信任带;新的 " 最佳测试 " 和 " 信任带 " 完善了伯尔克、琼斯(1979年)和欧文(1995年)的程序。粗略地说,在分布区尾端地区,后一种程序的力量和准确性基本上得以保持,同时在中部地区大幅增长。 " 良好 " 测试在涉及宽度的信号探测问题方面表现良好,例如多诺霍和金(2004年)以及贾杰尔和威尔纳(2007年),但也处于毗连性替代物之下。我们对信任带的分析揭示了 " 基本价格 " 的影响。