It is prevalent to utilize external knowledge to help machine answer questions that need background commonsense, which faces a problem that unlimited knowledge will transmit noisy and misleading information. Towards the issue of introducing related knowledge, we propose a semantic-driven knowledge-aware QA framework, which controls the knowledge injection in a coarse-to-careful fashion. We devise a tailoring strategy to filter extracted knowledge under monitoring of the coarse semantic of question on the knowledge extraction stage. And we develop a semantic-aware knowledge fetching module that engages structural knowledge information and fuses proper knowledge according to the careful semantic of questions in a hierarchical way. Experiments demonstrate that the proposed approach promotes the performance on the CommonsenseQA dataset comparing with strong baselines.
翻译:使用外部知识帮助机器解答需要背景常识的问题十分普遍,这个问题面临着无限知识会传播噪音和误导性信息的问题。 关于引入相关知识的问题,我们提议了一个语义驱动知识认知QA框架,以粗略到谨慎的方式控制知识注入。我们设计了一个定制战略,在监测知识提取阶段的粗糙语义问题时过滤提取的知识。我们开发了一个语义认知获取知识模块,该模块根据对问题的审慎语义描述,以分级方式提供结构知识信息,并结合适当的知识。实验表明,拟议方法促进了与强度基线相比较的普林斯顿语QA数据集的绩效。