Object tracking has achieved significant progress over the past few years. However, state-of-the-art trackers become increasingly heavy and expensive, which limits their deployments in resource-constrained applications. In this work, we present LightTrack, which uses neural architecture search (NAS) to design more lightweight and efficient object trackers. Comprehensive experiments show that our LightTrack is effective. It can find trackers that achieve superior performance compared to handcrafted SOTA trackers, such as SiamRPN++ and Ocean, while using much fewer model Flops and parameters. Moreover, when deployed on resource-constrained mobile chipsets, the discovered trackers run much faster. For example, on Snapdragon 845 Adreno GPU, LightTrack runs $12\times$ faster than Ocean, while using $13\times$ fewer parameters and $38\times$ fewer Flops. Such improvements might narrow the gap between academic models and industrial deployments in object tracking task. LightTrack is released at https://github.com/researchmm/LightTrack.


翻译:过去几年来,物体跟踪取得了显著进展。 但是,最先进的跟踪器越来越重,越来越昂贵,限制了其在资源限制的应用中的部署。 在这项工作中,我们展示了光跟踪器,它使用神经结构搜索(NAS)来设计更轻、更高效的物体跟踪器。全面实验表明,我们的光跟踪器是有效的。它可以找到比手工制作的SOTA跟踪器(如SiamRPN+++和Ocean)取得优异性能的跟踪器,同时使用更少的模型漂浮器和参数。此外,在资源限制的移动芯片上部署时,发现的跟踪器运行速度要快得多。例如,在Sapdrag 845 Adren GPU, LightTrack运行速度比海洋快12美元,同时使用13美元更少的参数和38美元更少的Flops。这些改进可以缩小在物体跟踪任务中学术模型与工业部署之间的差距。 LightTrack在https://github.com/researchmm/LightTrack上发布。

0
下载
关闭预览

相关内容

标跟踪是指:给出目标在跟踪视频第一帧中的初始状态(如位置,尺寸),自动估计目标物体在后续帧中的状态。 目标跟踪分为单目标跟踪和多目标跟踪。 人眼可以比较轻松的在一段时间内跟住某个特定目标。但是对机器而言,这一任务并不简单,尤其是跟踪过程中会出现目标发生剧烈形变、被其他目标遮挡或出现相似物体干扰等等各种复杂的情况。过去几十年以来,目标跟踪的研究取得了长足的发展,尤其是各种机器学习算法被引入以来,目标跟踪算法呈现百花齐放的态势。2013年以来,深度学习方法开始在目标跟踪领域展露头脚,并逐渐在性能上超越传统方法,取得巨大的突破。

知识荟萃

精品入门和进阶教程、论文和代码整理等

更多

查看相关VIP内容、论文、资讯等
最新《神经架构搜索NAS》教程,33页pdf
专知会员服务
26+阅读 · 2020年12月2日
专知会员服务
60+阅读 · 2020年3月19日
专知会员服务
109+阅读 · 2020年3月12日
抢鲜看!13篇CVPR2020论文链接/开源代码/解读
专知会员服务
49+阅读 · 2020年2月26日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
【深度学习视频分析/多模态学习资源大列表】
专知会员服务
91+阅读 · 2019年10月16日
Multi-Task Learning的几篇综述文章
深度学习自然语言处理
15+阅读 · 2020年6月15日
CCF推荐 | 国际会议信息10条
Call4Papers
8+阅读 · 2019年5月27日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
人工智能 | 国际会议信息10条
Call4Papers
5+阅读 · 2018年12月18日
计算机 | CCF推荐会议信息10条
Call4Papers
5+阅读 · 2018年10月18日
Fully-Convolutional Siamese Networks for Object Tracking论文笔记
统计学习与视觉计算组
9+阅读 · 2018年10月12日
【跟踪Tracking】15篇论文+代码 | 中秋快乐~
专知
18+阅读 · 2018年9月24日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
Arxiv
0+阅读 · 2021年6月15日
Neural Architecture Optimization
Arxiv
8+阅读 · 2018年9月5日
Arxiv
12+阅读 · 2018年9月5日
Arxiv
8+阅读 · 2018年3月20日
Arxiv
7+阅读 · 2017年12月28日
VIP会员
相关资讯
Multi-Task Learning的几篇综述文章
深度学习自然语言处理
15+阅读 · 2020年6月15日
CCF推荐 | 国际会议信息10条
Call4Papers
8+阅读 · 2019年5月27日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
人工智能 | 国际会议信息10条
Call4Papers
5+阅读 · 2018年12月18日
计算机 | CCF推荐会议信息10条
Call4Papers
5+阅读 · 2018年10月18日
Fully-Convolutional Siamese Networks for Object Tracking论文笔记
统计学习与视觉计算组
9+阅读 · 2018年10月12日
【跟踪Tracking】15篇论文+代码 | 中秋快乐~
专知
18+阅读 · 2018年9月24日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
相关论文
Top
微信扫码咨询专知VIP会员