In power systems, the incorporation of capacitors offers a wide range of established advantages. These benefits encompass the enhancement of the systems power factor, optimization of voltage profiles, increased capacity for current flow through cables and transformers, and the mitigation of losses attributed to the compensation of reactive power components. Different techniques have been applied to enhance the performance of the distribution system by reducing line losses. This paper focuses on reducing line losses through the optimal placement and sizing of capacitors. Optimal capacitor placement is analysed using load flow analysis with the Newton Raphson method. The placement of capacitor optimization is related to the sensitivity of the buses, which depends on the loss sensitivity factor. The optimal capacitor size is determined using Particle Swarm Optimization (PSO). The analysis is conducted using the IEEE 14 bus system in MATLAB. The results reveal that placing capacitors at the most sensitive bus locations leads to a significant reduction in line losses. Additionally, the optimal capacitor size has a substantial impact on improving the voltage profile and the power loss is reduced by 21.02 percent through the proposed method.
翻译:暂无翻译