This paper introduces a Laplace approximation to Bayesian inference in regression models for multivariate response variables. We focus on Dirichlet regression models, which can be used to analyze a set of variables on a simplex exhibiting skewness and heteroscedasticity, without having to transform the data. These data, which mainly consist of proportions or percentages of disjoint categories, are widely known as compositional data and are common in areas such as ecology, geology, and psychology. We provide both the theoretical foundations and a description of how this Laplace approximation can be implemented in the case of Dirichlet regression. The paper also introduces the package dirinla in the R-language that extends the INLA package, which can not deal directly with multivariate likelihoods like the Dirichlet likelihood. Simulation studies are presented to validate the good behaviour of the proposed method, while a real data case-study is used to show how this approach can be applied.


翻译:本文在多变量响应变量回归模型中引入了巴伊西亚推论的拉普尔近似值。 我们侧重于迪里赫莱特回归模型, 该模型可用于分析一组在简单x上显示扭曲性和异质性的变量, 而不必转换数据。 这些数据主要由不相干类别的比例或百分比构成, 被广泛称为构成数据, 在生态、地质和心理学等领域很常见。 我们既提供了理论基础, 也描述了如何在迪里赫莱特回归的情况下实施拉普尔近似值。 本文还以R语引入了扩展INLA软件包的套件dirinla。 这套软件无法直接处理多变可能性, 如Drichlet的可能性。 模拟研究旨在验证拟议方法的良好行为, 同时使用真实的数据案例研究来显示如何应用这一方法 。

0
下载
关闭预览

相关内容

专知会员服务
51+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
专知会员服务
19+阅读 · 2020年9月6日
Python数据分析:过去、现在和未来,52页ppt
专知会员服务
102+阅读 · 2020年3月9日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
计算机 | 国际会议信息5条
Call4Papers
3+阅读 · 2019年7月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Multivariate Deep Evidential Regression
Arxiv
0+阅读 · 2021年4月15日
Arxiv
4+阅读 · 2018年1月15日
VIP会员
相关资讯
计算机 | 国际会议信息5条
Call4Papers
3+阅读 · 2019年7月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员