Conformal prediction constructs a confidence region for an unobserved response of a feature vector based on previous identically distributed and exchangeable observations of responses and features. It has a coverage guarantee at any nominal level without additional assumptions on their distribution. However, it requires a refitting procedure for all replacement candidates of the target response. In regression settings, this corresponds to an infinite number of model fit. Apart from relatively simple estimators that can be written as pieces of linear function of the response, efficiently computing such sets is difficult and is still considered as an open problem. We exploit the fact that, \emph{often}, conformal prediction sets are intervals whose boundaries can be efficiently approximated by classical root-finding software. We investigate how this approach can overcome many limitations of formerly used strategies and achieves calculations that have been unattainable so far. We discuss its complexity as well as its drawbacks and evaluate its efficiency through numerical experiments.


翻译:非正式预测根据以前对响应和特征的分布和可交换的相同观测结果,为特性矢量的未观测反应构建了一个信任区域。在任何名义水平上都具有覆盖保障,而没有额外的分布假设。然而,它要求对所有目标响应的替代候选人进行重新配置程序。在回归情况下,这相当于一个无限数量的适合模型。除了可以作为响应的线性功能碎片写成的相对简单的估计值之外,高效计算这类数据集是困难的,并且仍被视为一个未解决的问题。我们利用以下事实,即符合的预测数据集是典型的根基调查软件能够有效接近其边界的间隔点。我们调查这一方法如何能够克服以前使用的战略的许多局限性,并实现迄今为止无法实现的计算。我们讨论其复杂性及其缺陷,并通过数字实验评估其效率。

0
下载
关闭预览

相关内容

【干货书】面向计算科学和工程的Python导论,167页pdf
专知会员服务
41+阅读 · 2021年4月7日
专知会员服务
76+阅读 · 2021年3月16日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
一份简单《图神经网络》教程,28页ppt
专知会员服务
123+阅读 · 2020年8月2日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
CCF推荐 | 国际会议信息6条
Call4Papers
9+阅读 · 2019年8月13日
人工智能 | ACCV 2020等国际会议信息5条
Call4Papers
6+阅读 · 2019年6月21日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
计算机 | EMNLP 2019等国际会议信息6条
Call4Papers
18+阅读 · 2019年4月26日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
计算机类 | LICS 2019等国际会议信息7条
Call4Papers
3+阅读 · 2018年12月17日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
Proper Scoring Rules for Missing Value Imputation
Arxiv
0+阅读 · 2021年6月7日
Arxiv
0+阅读 · 2021年6月6日
Arxiv
26+阅读 · 2018年2月27日
VIP会员
相关VIP内容
【干货书】面向计算科学和工程的Python导论,167页pdf
专知会员服务
41+阅读 · 2021年4月7日
专知会员服务
76+阅读 · 2021年3月16日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
一份简单《图神经网络》教程,28页ppt
专知会员服务
123+阅读 · 2020年8月2日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
相关资讯
CCF推荐 | 国际会议信息6条
Call4Papers
9+阅读 · 2019年8月13日
人工智能 | ACCV 2020等国际会议信息5条
Call4Papers
6+阅读 · 2019年6月21日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
计算机 | EMNLP 2019等国际会议信息6条
Call4Papers
18+阅读 · 2019年4月26日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
计算机类 | LICS 2019等国际会议信息7条
Call4Papers
3+阅读 · 2018年12月17日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
Top
微信扫码咨询专知VIP会员