To predict the health effects of accidental or therapeutic radiation exposure, one must estimate the radiation dose that person received. A well-known ionising radiation biomarker, phosphorylated gamma-H2AX protein, is used to evaluate cell damage and is thus suitable for the dose estimation process. In this paper, we present new Bayesian methods that, in contrast to approaches where estimation is carried out at predetermined post-irradiation times, allow for uncertainty regarding the time since radiation exposure and, as a result, produce more precise results. We also use the Laplace approximation method, which drastically cuts down on the time needed to get results. Real data are used to illustrate the methods, and analyses indicate that the models might be a practical choice for the gamma-H2AX biomarker dose estimation process.
翻译:为了预测意外或治疗性辐射照射对健康的影响,必须估计人们收到的辐射剂量。众所周知的离子辐射生物标志(磷酸甲酸丙酸γ-H2AX蛋白)被用来评估细胞损害,因此适合剂量估计过程。在本文件中,我们介绍了新的巴耶斯方法,与在预定辐射后时间进行估计的方法不同,这些方法允许对辐照时间的不确定性,并因此产生更准确的结果。我们还使用拉普尔近距离法,该方法极大地缩短了取得结果所需的时间。真实数据被用于说明方法,分析表明模型可能是伽马-H2AX生物标志剂量估计过程的一个实际选择。