A recent paper (Hedden 2021) has argued that most of the group fairness constraints discussed in the machine learning literature are not necessary conditions for the fairness of predictions, and hence that there are no genuine fairness metrics. This is proven by discussing a special case of a fair prediction. In our paper, we show that Hedden 's argument does not hold for the most common kind of predictions used in data science, which are about people and based on data from similar people; we call these human-group-based practices. We argue that there is a morally salient distinction between human-group-based practices and those that are based on data of only one person, which we call human-individual-based practices. Thus, what may be a necessary condition for the fairness of human-group-based practices may not be a necessary condition for the fairness of human-individual-based practices, on which Hedden 's argument is based. Accordingly, the group fairness metrics discussed in the machine learning literature may still be relevant for most applications of prediction-based decision making.


翻译:最近的一份论文(Hedden 2021)指出,机器学习文献中讨论的多数群体公平性限制不是公平预测的必要条件,因此没有真正的公平度量尺度。这通过讨论一个公平预测的特殊案例得到证明。在我们的论文中,我们表明,Hedden的论点并不支持数据科学中最常用的预测类型,即关于人和基于类似人的数据;我们称之为这些基于人类群体的做法。我们争辩说,基于人类群体的做法与仅仅基于一个人的数据的做法之间在道德上存在着明显的区别,我们称之为基于个人的做法。因此,基于人类群体的做法的公平性的必要条件可能不是基于人类个人做法的公平性的必要条件,而赫登的论点正是基于这种公平性。因此,机器学习文献中讨论的群体公平度量度可能仍然适用于大多数基于预测的决策。

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Call for Nominations: 2022 Multimedia Prize Paper Award
CCF多媒体专委会
0+阅读 · 2022年2月12日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
26+阅读 · 2011年12月31日
国家自然科学基金
9+阅读 · 2011年12月31日
Fairness and Bias in Robot Learning
Arxiv
0+阅读 · 2022年7月7日
Arxiv
0+阅读 · 2022年7月7日
Arxiv
0+阅读 · 2022年7月7日
Arxiv
0+阅读 · 2022年7月6日
Arxiv
64+阅读 · 2021年6月18日
VIP会员
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Call for Nominations: 2022 Multimedia Prize Paper Award
CCF多媒体专委会
0+阅读 · 2022年2月12日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
26+阅读 · 2011年12月31日
国家自然科学基金
9+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员