Traffic forecasting is a critical task to extract values from cyber-physical infrastructures, which is the backbone of smart transportation. However owing to external contexts, the dynamics at each sensor are unique. For example, the afternoon peaks at sensors near schools are more likely to occur earlier than those near residential areas. In this paper, we first analyze real-world traffic data to show that each sensor has a unique dynamic. Further analysis also shows that each pair of sensors also has a unique dynamic. Then, we explore how node embedding learns the unique dynamics at every sensor location. Next, we propose a novel module called Spatial Graph Transformers (SGT) where we use node embedding to leverage the self-attention mechanism to ensure that the information flow between two sensors is adaptive with respect to the unique dynamic of each pair. Finally, we present Graph Self-attention WaveNet (G-SWaN) to address the complex, non-linear spatiotemporal traffic dynamics. Through empirical experiments on four real-world, open datasets, we show that the proposed method achieves superior performance on both traffic speed and flow forecasting. Code is available at: https://github.com/aprbw/G-SWaN
翻译:网络物理基础设施是智能交通的支柱。 然而,由于外部环境,每个传感器的动态是独特的。 例如,学校附近的传感器的下午高峰更有可能比住宅区附近的传感器更早发生。 在本文中,我们首先分析真实世界交通数据,以显示每个传感器都有独特的动态。 进一步的分析还显示, 每对传感器也有一个独特的动态。 然后, 我们探索如何在每一个传感器位置进行不嵌入学习独特的动态。 下一步, 我们提议一个名为空间图形变异器(SGT)的新颖模块, 在那里我们使用节嵌来利用自留机制确保两个传感器之间的信息流动适应每一对独特的动态。 最后, 我们介绍图形自留波网络(G- SWaN), 以解决复杂、 非线性波波波交通动态。 通过对四个真实世界、 开放数据集的实验, 我们展示了拟议方法在传输速度和流动预测上都达到更高性功能。 代码可以查到 : https:// gistrub/SWA.com 。