项目名称: 原位生长SiC/Si纳米异质结的结构调控和发光性能研究

项目编号: No.51302250

项目类型: 青年科学基金项目

立项/批准年度: 2014

项目学科: 一般工业技术

项目作者: 王海燕

作者单位: 郑州轻工业学院

项目金额: 22万元

中文摘要: SiC具有高的化学稳定性、优异的电学和机械性能以及室温下的可见光发射,是一种重要的硅基光电器件外延材料。目前,提高SiC/Si异质结的电学和发光性能是该领域重要的研究课题。本课题以原位碳化技术制备的SiC/Si纳米异质结(SiC/Si-NPA)为研究对象,通过调控纳米Si和纳米SiC的尺寸和形貌调节其晶格结构,实现对二者晶格适配度以及SiC/Si异质结界面态、电学和发光性能的调制。建立SiC/Si纳米异质结微观结构与其整流特性、击穿电压、光吸收、光反射、光致/电致发光性能之间的关系,阐明结构调控对SiC/Si纳米异质结电子结构的剪裁和载流子复合路径的控制作用。揭示结构调控对SiC/Si异质结电学和发光性能的影响规律,探索利用纳米技术提高SiC/Si异质结光电性能的方法,为SiC/Si光电器件的研发和应用提供思路。

中文关键词: 多孔硅阵列;SiC;复合纳米材料;光电性能;协同作用

英文摘要: SiC is an important extensional material for the fabrication of silicon based optoelectronic devices in virtue of its high chemical stability, outstanding electronic and mechanical properties and light emission at room temperature. Nowadays, improving the electronic and optical properties of SiC/Si heterojunction is becoming an important research topic in this field. This research will take the in situ grown SiC/Si nanoheterojunction as the research object and modulate the crystal lattice structure of nanometer Si and SiC, the dismatch and the interface states between Si and SiC, the electronic and optical properties of the SiC/Si nanoheterojunction by regulating the size and morphology of Si and SiC. Build the relationships between the microstructure of SiC/Si and its rectification, breakdown, light abstraction/reflection, photoluminescence and electroluminescence, and clarify structural regulation's effect of tailoring to electronic structure and controlling to carrier-recombination path in SiC/Si. Disclose the effect rule of the structural regulation to electronic and optical properties of SiC/Si nanoheterojunction, explore effective ways with nanotechnology which can improve the optoelectronic properties of SiC/Si heterojunction and provide ideas for the fabrication and application of SiC/Si optoelectron

英文关键词: silicon nanoporous pillar array;SiC;composite nanomaterials;photoluminescence;mutually benefit

成为VIP会员查看完整内容
0

相关内容

专知会员服务
51+阅读 · 2021年10月16日
专知会员服务
55+阅读 · 2021年10月4日
专知会员服务
42+阅读 · 2021年9月7日
专知会员服务
86+阅读 · 2021年8月8日
专知会员服务
31+阅读 · 2021年5月7日
【2021新书】流形几何结构,322页pdf
专知会员服务
53+阅读 · 2021年2月22日
小目标检测技术研究综述
专知会员服务
120+阅读 · 2020年12月7日
【IJCAI2020】图神经网络预测结构化实体交互
专知会员服务
42+阅读 · 2020年5月13日
【材料课堂】TEM复杂电子衍射花样的标定原理
材料科学与工程
39+阅读 · 2019年4月12日
高分子材料领域的十大院士!
材料科学与工程
19+阅读 · 2018年9月18日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Arxiv
0+阅读 · 2022年4月20日
Arxiv
0+阅读 · 2022年4月20日
Arxiv
0+阅读 · 2022年4月19日
小贴士
相关VIP内容
专知会员服务
51+阅读 · 2021年10月16日
专知会员服务
55+阅读 · 2021年10月4日
专知会员服务
42+阅读 · 2021年9月7日
专知会员服务
86+阅读 · 2021年8月8日
专知会员服务
31+阅读 · 2021年5月7日
【2021新书】流形几何结构,322页pdf
专知会员服务
53+阅读 · 2021年2月22日
小目标检测技术研究综述
专知会员服务
120+阅读 · 2020年12月7日
【IJCAI2020】图神经网络预测结构化实体交互
专知会员服务
42+阅读 · 2020年5月13日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
微信扫码咨询专知VIP会员