A finite element analysis of a Dirichlet boundary control problem governed by the linear parabolic equation is presented in this article. The Dirichlet control is considered in a closed and convex subset of the energy space $H^1(\Omega \times(0,T)).$ We prove well-posedness and discuss some regularity results for the control problem. We derive the optimality system for the optimal control problem. The first order necessary optimality condition results in a simplified Signorini type problem for control variable. The space discretization of the state variable is done using conforming finite elements, whereas the time discretization is based on discontinuous Galerkin methods. To discretize the control we use the conforming prismatic Lagrange finite elements. We derive an optimal order of convergence of error in control, state, and adjoint state. The theoretical results are corroborated by some numerical tests.
翻译:对受线性抛物线方程式管辖的迪里切莱边界控制问题的有限要素分析在本条中介绍。 Dirichlet控制是在能源空间的封闭和连接子集中考虑的 $H1 (\ omega\time( 0,T) $.) 我们证明控制问题有很好的储备, 并讨论控制问题的某些规律性结果。 我们为最佳控制问题得出了最佳的系统。 第一个顺序的必要最佳性条件导致控制变量的简化的斯莫里尼型问题。 国家变量的空间分解是使用符合限制元素进行的, 而时间分解则以不连续的加列金方法为基础。 要将控制分解, 我们使用符合典型拉格兰特的有限元素。 我们从控制、 状态和 联合状态的错误中得出了最佳的一致。 理论结果得到了某些数字测试的证实。