Despite the fast advances in high-sigma yield analysis with the help of machine learning techniques in the past decade, one of the main challenges, the curse of dimensionality, which is inevitable when dealing with modern large-scale circuits, remains unsolved. To resolve this challenge, we propose an absolute shrinkage deep kernel learning, ASDK, which automatically identifies the dominant process variation parameters in a nonlinear-correlated deep kernel and acts as a surrogate model to emulate the expensive SPICE simulation. To further improve the yield estimation efficiency, we propose a novel maximization of approximated entropy reduction for an efficient model update, which is also enhanced with parallel batch sampling for parallel computing, making it ready for practical deployment. Experiments on SRAM column circuits demonstrate the superiority of ASDK over the state-of-the-art (SOTA) approaches in terms of accuracy and efficiency with up to 10.3x speedup over SOTA methods.
翻译:尽管过去10年在机器学习技术的帮助下,在高成像率分析方面取得了快速进展,但主要挑战之一,即在现代大型电路处理过程中不可避免的对维度的诅咒仍未得到解决。为了解决这一挑战,我们提议绝对缩小深度内核学习,ASDK自动确定非线性内核的主要过程变异参数,并充当效仿昂贵的SPICE模拟的代用模型。为了进一步提高产量估计效率,我们提议以新颖的方式最大限度地减少约近似微缩,以进行高效的模型更新,同时进行平行计算机的批量抽样,使之更便于实际部署。 SRAM 柱电路实验显示,ASDK在精确和效率方面优于SOTA方法,在精确和效率方面优于SOTA方法,在10.3x加速速度方面优于SOTA方法。