We consider the problem of performing prediction when observed values are at their highest levels. We construct an inner product space of nonnegative random variables from transformed-linear combinations of independent regularly varying random variables. The matrix of inner products corresponds to the tail pairwise dependence matrix, which summarizes tail dependence. The projection theorem yields the optimal transformed-linear predictor, which has the same form as the best linear unbiased predictor in non-extreme prediction. We also construct prediction intervals based on the geometry of regular variation. We show that these intervals have good coverage in a simulation study as well as in two applications; prediction of high pollution levels, and prediction of large financial losses.


翻译:我们考虑了在观测值处于最高水平时进行预测的问题。我们从独立、经常变化的随机变量的变式线性组合中构建了一个非负随机变量的内部产品空间。内部产品矩阵与尾端双向依赖性矩阵相对应,该矩阵总结了尾尾端依赖性。预测的定理产生最佳的流线性预测器,其形式与非极端预测中的最佳线性无偏向预测器相同。我们还根据定期变异的几何方法构建了预测间隔。我们显示这些间隔在模拟研究中和两个应用中都有很好的覆盖;高污染水平预测,以及重大财政损失预测。

0
下载
关闭预览

相关内容

【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
《自然》(20190829出版)一周论文导读
科学网
6+阅读 · 2019年8月30日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
【推荐】Python机器学习生态圈(Scikit-Learn相关项目)
机器学习研究会
6+阅读 · 2017年8月23日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Arxiv
26+阅读 · 2018年2月27日
VIP会员
相关VIP内容
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关资讯
《自然》(20190829出版)一周论文导读
科学网
6+阅读 · 2019年8月30日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
【推荐】Python机器学习生态圈(Scikit-Learn相关项目)
机器学习研究会
6+阅读 · 2017年8月23日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Top
微信扫码咨询专知VIP会员