Quantum annealing (QA) and Quantum Alternating Operator Ansatz (QAOA) are both heuristic quantum algorithms intended for sampling optimal solutions of combinatorial optimization problems. In this article we implement a rigorous direct comparison between QA on D-Wave hardware and QAOA on IBMQ hardware. These two quantum algorithms are also compared against classical simulated annealing. The studied problems are instances of a class of Ising models, with variable assignments of $+1$ or $-1$, that contain cubic $ZZZ$ interactions (higher order terms) and match both the native connectivity of the Pegasus topology D-Wave chips and the heavy hexagonal lattice of the IBMQ chips. The novel QAOA implementation on the heavy hexagonal lattice has a CNOT depth of $6$ per round and allows for usage of an entire heavy hexagonal lattice. Experimentally, QAOA is executed on an ensemble of randomly generated Ising instances with a grid search over $1$ and $2$ round angles using all 127 programmable superconducting transmon qubits of ibm_washington. The error suppression technique digital dynamical decoupling is also tested on all QAOA circuits. QA is executed on the same Ising instances with the programmable superconducting flux qubit devices D-Wave Advantage_system4.1 and Advantage_system6.1 using modified annealing schedules with pauses. We find that QA outperforms QAOA on all problem instances. We also find that dynamical decoupling enables 2-round QAOA to marginally outperform 1-round QAOA, which is not the case without dynamical decoupling.
翻译:量子退火(QA)与Quantum Alternating Operator Ansatz(QAOA)均为启发式量子算法,旨在采样组合优化问题的最优解。本文在D-Wave硬件上实现了QA和在IBM-Q硬件上实现了QAOA的直接比较。这两种量子算法还与经典模拟退火作了比较。所研究的问题是一类Ising模型的实例,具有变量分配为+1或-1,其中包含三次ZZZ相互作用(高阶项),与Pegasus拓扑的D-Wave芯片和IBM-Q芯片的重型六边形晶格相匹配。在重型六边形晶格上,实现了新的QAOA实现,每个回合的CNOT深度为6,并允许使用整个重型六边形晶格。在ibm_washington的127个可编程超导体跨谐振器比特上,随机生成了Ising实例的集合,并通过网格搜索枚举角度1和2个回合,实现了QAOA。数字动态解耦误差抑制技术在所有QAOA电路上进行了测试。在具有暂停的修改退火调度下,采用可编程超导体流量比特设备D-Wave Advantage_system4.1和Advantage_system6.1实现了QA。我们发现,在所有问题实例上,QA的性能优于QAOA。我们还发现,数字动态解耦使2个回合的QAOA略优于1个回合的QAOA,而没有数字动态解耦则不是这种情况。