Clustering mixed data presents numerous challenges inherent to the very heterogeneous nature of the variables. A clustering algorithm should be able, despite of this heterogeneity, to extract discriminant pieces of information from the variables in order to design groups. In this work we introduce a multilayer architecture model-based clustering method called Mixed Deep Gaussian Mixture Model (MDGMM) that can be viewed as an automatic way to merge the clustering performed separately on continuous and non-continuous data. This architecture is flexible and can be adapted to mixed as well as to continuous or non-continuous data. In this sense we generalize Generalized Linear Latent Variable Models and Deep Gaussian Mixture Models. We also design a new initialisation strategy and a data driven method that selects the best specification of the model and the optimal number of clusters for a given dataset "on the fly". Besides, our model provides continuous low-dimensional representations of the data which can be a useful tool to visualize mixed datasets. Finally, we validate the performance of our approach comparing its results with state-of-the-art mixed data clustering models over several commonly used datasets.


翻译:组合的混合数据是变量非常多样化性质所固有的众多挑战。 组合算法应该能够(尽管这种差异性)从变量中提取不同的信息碎片,以便设计组。 在这项工作中,我们引入了多层结构模型基组法,称为“ 混合深层混集模型(MDMM) ” (MDMM), 这可以被视为将连续和非连续数据分别进行组集的自动合并方式。 这个结构是灵活的,可以适用于混合数据以及连续或非连续的数据。 从这个意义上讲,我们将通用线性边端变量模型和深高山混集模型和深高山混集模型进行概括。 我们还设计了新的初始化战略和数据驱动方法,为“ 苍蝇” 的给定数据集选择模型的最佳规格和最佳组群数。 此外,我们的模型为数据提供了连续的低维度表达方式,这可以成为对混合数据集进行可视化的有用工具。 最后,我们验证了我们方法的绩效,将结果与一些常用的状态混合数据组合模型进行比较。

0
下载
关闭预览

相关内容

剑桥大学《数据科学: 原理与实践》课程,附PPT下载
专知会员服务
47+阅读 · 2021年1月20日
【干货书】机器学习速查手册,135页pdf
专知会员服务
122+阅读 · 2020年11月20日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
144+阅读 · 2019年10月12日
开源书:PyTorch深度学习起步
专知会员服务
49+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
14+阅读 · 2019年4月13日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【推荐】MXNet深度情感分析实战
机器学习研究会
16+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
3+阅读 · 2020年2月5日
Arxiv
4+阅读 · 2018年4月26日
Arxiv
3+阅读 · 2018年2月24日
Arxiv
6+阅读 · 2018年2月24日
Arxiv
3+阅读 · 2018年1月31日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
14+阅读 · 2019年4月13日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【推荐】MXNet深度情感分析实战
机器学习研究会
16+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员