We provide a tight result for a fundamental problem arising from packing squares into a circular container: The critical density of packing squares into a disk is $\delta=\frac{8}{5\pi}\approx 0.509$. This implies that any set of (not necessarily equal) squares of total area $A \leq \frac{8}{5}$ can always be packed into a disk with radius 1; in contrast, for any $\varepsilon>0$ there are sets of squares of total area $\frac{8}{5}+\varepsilon$ that cannot be packed, even if squares may be rotated. This settles the last (and arguably, most elusive) case of packing circular or square objects into a circular or square container: The critical densities for squares in a square $\left(\frac{1}{2}\right)$, circles in a square $\left(\frac{\pi}{(3+2\sqrt{2})}\approx 0.539\right)$ and circles in a circle $\left(\frac{1}{2}\right)$ have already been established, making use of recursive subdivisions of a square container into pieces bounded by straight lines, or the ability to use recursive arguments based on similarity of objects and container; neither of these approaches can be applied when packing squares into a circular container. Our proof uses a careful manual analysis, complemented by a computer-assisted part that is based on interval arithmetic. Beyond the basic mathematical importance, our result is also useful as a blackbox lemma for the analysis of recursive packing algorithms. At the same time, our approach showcases the power of a general framework for computer-assisted proofs, based on interval arithmetic.


翻译:我们为将方块包装成圆形容器所产生的根本问题提供一个紧凑的结果:将方块包装到磁盘中的关键密度是$\delta ⁇ frac{8\\5\pie} ⁇ =approx0.509美元。 这意味着将圆形或平方对象包装到圆形或方容器中的任何一组(不一定相等)方块$A\leq\frac{8\ ⁇ {8\%5}5}美元可以总是用半径1打入盘中;相比之下,对于任何$\varepsil>0$的盘中,总面积为$\prec{8\ ⁇ 5 ⁇ vävareblesslon$的一组方块无法包装,即使正方块可以旋转方块旋转。 以平方块法法的平方块内值分析也可以用到平方块的平方块内值。

0
下载
关闭预览

相关内容

专知会员服务
42+阅读 · 2020年12月18日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
随波逐流:Similarity-Adaptive and Discrete Optimization
我爱读PAMI
5+阅读 · 2018年2月6日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
14+阅读 · 2020年12月17日
q-Space Novelty Detection with Variational Autoencoders
Arxiv
4+阅读 · 2018年4月10日
Arxiv
6+阅读 · 2018年1月29日
VIP会员
相关资讯
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
随波逐流:Similarity-Adaptive and Discrete Optimization
我爱读PAMI
5+阅读 · 2018年2月6日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员