The success of deep learning ignited interest in whether the brain learns hierarchical representations using gradient-based learning. However, current biologically plausible methods for gradient-based credit assignment in deep neural networks need infinitesimally small feedback signals, which is problematic in biologically realistic noisy environments and at odds with experimental evidence in neuroscience showing that top-down feedback can significantly influence neural activity. Building upon deep feedback control (DFC), a recently proposed credit assignment method, we combine strong feedback influences on neural activity with gradient-based learning and show that this naturally leads to a novel view on neural network optimization. Instead of gradually changing the network weights towards configurations with low output loss, weight updates gradually minimize the amount of feedback required from a controller that drives the network to the supervised output label. Moreover, we show that the use of strong feedback in DFC allows learning forward and feedback connections simultaneously, using learning rules fully local in space and time. We complement our theoretical results with experiments on standard computer-vision benchmarks, showing competitive performance to backpropagation as well as robustness to noise. Overall, our work presents a fundamentally novel view of learning as control minimization, while sidestepping biologically unrealistic assumptions.
翻译:深层次学习的成功激发了人们对于大脑是否利用梯度学习来学习等级代表的兴趣。然而,目前深神经网络中基于梯度的信用分配在生物上看似可行的方法需要极小的反馈信号,这在生物上现实的吵闹环境中是成问题的,而且与神经科学中的实验性证据表明自上而下的反馈可以对神经活动产生重大影响。最近提出的一种信用分配方法,即深度反馈控制(DFC),我们利用基于梯度的学习,将强烈的反馈对神经活动的影响与基于梯度的学习结合起来,并表明这自然导致对神经网络优化的新观点。我们的工作不是逐渐将网络重量改变为低产出损失的配置,而是逐渐将一个将网络驱动到受监督的产出标签的控制者所要求的反馈数量减少到最低。此外,我们表明,利用强大的反馈使DFC能够同时学习前方和反馈联系,同时使用完全在空间和时间的当地学习规则。我们理论结果与标准计算机视觉基准的实验相辅相成,显示有竞争力的性表现,并显示对噪音的稳健健。总体而言,我们的工作提出了一种根本的新观点,即学会控制最小化的最小化观点。