Recent researches demonstrate that Deep Neural Networks (DNN) models are vulnerable to backdoor attacks. The backdoored DNN model will behave maliciously when images containing backdoor triggers arrive. To date, existing backdoor attacks are single-trigger and single-target attacks, and the triggers of most existing backdoor attacks are obvious thus are easy to be detected or noticed. In this paper, we propose a novel imperceptible and multi-channel backdoor attack against Deep Neural Networks by exploiting Discrete Cosine Transform (DCT) steganography. Based on the proposed backdoor attack method, we implement two variants of backdoor attacks, i.e., N-to-N backdoor attack and N-to-One backdoor attack. Specifically, for a colored image, we utilize DCT steganography to construct the trigger on different channels of the image. As a result, the trigger is stealthy and natural. Based on the proposed method, we implement multi-target and multi-trigger backdoor attacks. Experimental results demonstrate that the average attack success rate of the N-to-N backdoor attack is 93.95% on CIFAR-10 dataset and 91.55% on TinyImageNet dataset, respectively. The average attack success rate of N-to-One attack is 90.22% and 89.53% on CIFAR-10 and TinyImageNet datasets, respectively. Meanwhile, the proposed backdoor attack does not affect the classification accuracy of the DNN model. Moreover, the proposed attack is demonstrated to be robust to the state-of-the-art backdoor defense (Neural Cleanse).


翻译:最近的研究表明深神经网络(DNN) 模式很容易受到后门攻击。 当含有后门触发器的图像到达时, 后门 DNN 模式将出现恶意行为。 到目前为止, 现有的后门攻击是单触发器和单目标攻击, 而大多数现有的后门攻击的触发器显然很容易被检测或注意到。 在本文中, 我们提议对深神经网络( Deep Neal Net) 模式进行新的隐蔽和多通道的后门攻击。 根据提议的后门攻击方法, 我们实施后门攻击的后门DNNNNNNNNNN的后门攻击两个变种。 具体地说, 对于有色图像的图像,我们使用DCT的感应感应法来构建触发器。 结果, 触发器是隐性和自然的。 根据拟议方法, 我们实施多目标的后门和多级后门攻击。 我们的后门攻击方法, 实验结果显示, N- N- N- N- N- N- N- N- R- R- RA 攻击的平均攻击成功率 和 N- R- RA- N- N- N- RA- N- 攻击率 平均攻击率 攻击率- 攻击率

0
下载
关闭预览

相关内容

神经网络(Neural Networks)是世界上三个最古老的神经建模学会的档案期刊:国际神经网络学会(INNS)、欧洲神经网络学会(ENNS)和日本神经网络学会(JNNS)。神经网络提供了一个论坛,以发展和培育一个国际社会的学者和实践者感兴趣的所有方面的神经网络和相关方法的计算智能。神经网络欢迎高质量论文的提交,有助于全面的神经网络研究,从行为和大脑建模,学习算法,通过数学和计算分析,系统的工程和技术应用,大量使用神经网络的概念和技术。这一独特而广泛的范围促进了生物和技术研究之间的思想交流,并有助于促进对生物启发的计算智能感兴趣的跨学科社区的发展。因此,神经网络编委会代表的专家领域包括心理学,神经生物学,计算机科学,工程,数学,物理。该杂志发表文章、信件和评论以及给编辑的信件、社论、时事、软件调查和专利信息。文章发表在五个部分之一:认知科学,神经科学,学习系统,数学和计算分析、工程和应用。 官网地址:http://dblp.uni-trier.de/db/journals/nn/
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
专知会员服务
60+阅读 · 2020年3月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
14+阅读 · 2020年10月26日
Feature Denoising for Improving Adversarial Robustness
Arxiv
15+阅读 · 2018年12月9日
VIP会员
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
相关基金
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员