This paper provides a systematic and critical review of the economics literature on data as an economic good and draws lessons for data governance. We conclude that focusing on data as an economic good in governance efforts is hardwired to only result in more data production and cannot deliver other societal goals contrary to what is often claimed in the literature and policy. Data governance is often a red herring which distracts from other digital problems. The governance of digital society cannot rely exclusively on data-centric economic models. We review the literatures and the underlying empirical and political claims concerning data commons. While commons thinking is useful to frame digital problems in terms of ecologies, it has important limitations. We propose a political-ecological approach to governing the digital society, defined by ecological thinking about governance problems and the awareness of the political nature of framing the problems and mapping their ecological makeup.


翻译:本文系统性地回顾了数据作为经济商品在经济学领域的文献,并为数据治理提供了经验教训。我们得出结论,将治理努力集中在将数据视为经济商品上是注定会只会导致更多的数据生产,无法实现社会目标,这与文献和政策中经常声称的相反。数据治理常常是一个转移视听的话题,它会分散掉对其他数字问题的注意力。数字社会的治理不能仅仅依赖于数据中心的经济模式。我们回顾了有关数据共享的文献和基于数据共享的经验和政治论点。虽然共享思想用于以生态系统的术语框定数字问题是有用的,但这种思想存在重要的限制。我们提出了一种政治生态学的方法来治理数字社会,该方法通过生态思维来定义治理问题,认识到将问题环境化及在这个背景下映射的生态构成的政治性质。

1
下载
关闭预览

相关内容

数据治理是指从使用零散数据变为使用统一主数据、从具有很少或没有组织和流程治理到企业范围内的综合数据治理、从尝试处理主数据混乱状况到主数据井井有条的一个过程。数据治理是一种数据管理概念,涉及使组织能够确保在数据的整个生命周期中存在高数据质量的能力。一个数据管家是确保数据治理流程遵循,指导执行,并建议改进数据治理流程的作用。
专知会员服务
39+阅读 · 2020年9月6日
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
国家自然科学基金
3+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年6月2日
Arxiv
0+阅读 · 2023年5月30日
Arxiv
11+阅读 · 2020年12月2日
Arxiv
23+阅读 · 2018年8月3日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
相关基金
国家自然科学基金
3+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员