With the increasing adoption of Large Language Models (LLMs), more customization is needed to ensure privacy-preserving and safe generation. We address this objective from two critical aspects: unlearning of sensitive information and robustness to jail-breaking attacks. We investigate various constrained optimization formulations that address both aspects in a \emph{unified manner}, by finding the smallest possible interventions on LLM weights that either make a given vocabulary set unreachable or embed the LLM with robustness to tailored attacks by shifting part of the weights to a \emph{safer} region. Beyond unifying two key properties, this approach contrasts with previous work in that it doesn't require an oracle classifier that is typically not available or represents a computational overhead. Surprisingly, we find that the simplest point-wise constraint-based intervention we propose leads to better performance than max-min interventions, while having a lower computational cost. Comparison against state-of-the-art defense methods demonstrates superior performance of the proposed approach.
翻译:暂无翻译