The vast majority of work in self-supervised learning, both theoretical and empirical (though mostly the latter), have largely focused on recovering good features for downstream tasks, with the definition of "good" often being intricately tied to the downstream task itself. This lens is undoubtedly very interesting, but suffers from the problem that there isn't a "canonical" set of downstream tasks to focus on -- in practice, this problem is usually resolved by competing on the benchmark dataset du jour. In this paper, we present an alternative lens: one of parameter identifiability. More precisely, we consider data coming from a parametric probabilistic model, and train a self-supervised learning predictor with a suitably chosen parametric form. Then, we ask whether we can read off the ground truth parameters of the probabilistic model from the optimal predictor. We focus on the widely used self-supervised learning method of predicting masked tokens, which is popular for both natural languages and visual data. While incarnations of this approach have already been successfully used for simpler probabilistic models (e.g. learning fully-observed undirected graphical models), we focus instead on latent-variable models capturing sequential structures -- namely Hidden Markov Models with both discrete and conditionally Gaussian observations. We show that there is a rich landscape of possibilities, out of which some prediction tasks yield identifiability, while others do not. Our results, borne of a theoretical grounding of self-supervised learning, could thus potentially beneficially inform practice. Moreover, we uncover close connections with uniqueness of tensor rank decompositions -- a widely used tool in studying identifiability through the lens of the method of moments.


翻译:在自监督的理论和实证(尽管后者大多是后者)学习中,绝大多数工作在理论和经验上都主要侧重于为下游任务恢复良好的特征,而“良好”的定义往往与下游任务本身紧密地联系在一起。这个镜头无疑非常有趣,但也有问题,即没有一套“卡门”的下游任务需要关注,实际上,这个问题通常通过在基准数据集上竞争来解决。在本文中,我们提出了一个替代镜头:一个参数可识别性。更确切地说,我们认为数据来自一个参数可辨别的自我稳定模型,并且用一个适当选择的参数形式来训练一个自我监督的学习预测预测预测器。然后,我们问我们是否能够从最佳预测器的预测器的地面参数上阅读。我们侧重于广泛使用的自我监督的预测掩码符号的学习方法,这对自然语言和视觉数据都是受欢迎的。虽然这一方法具有可解释性,但已经成功地用于更简单的直观的自我稳定模型(例如:我们所观测的可测的可测的极易变性数据),而我们又通过一个可测的可测的可测的可测的模型,我们所测的可测的可测的可测的可测的可测的可测性模型来学习性模型来学习的。

0
下载
关闭预览

相关内容

最新《自监督表示学习》报告,70页ppt
专知会员服务
85+阅读 · 2020年12月22日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
开源书:PyTorch深度学习起步
专知会员服务
50+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
7+阅读 · 2012年12月31日
国家自然科学基金
3+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
Arxiv
1+阅读 · 2022年4月18日
Arxiv
1+阅读 · 2022年4月17日
Arxiv
27+阅读 · 2021年11月11日
Arxiv
13+阅读 · 2019年11月14日
VIP会员
相关VIP内容
最新《自监督表示学习》报告,70页ppt
专知会员服务
85+阅读 · 2020年12月22日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
开源书:PyTorch深度学习起步
专知会员服务
50+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
7+阅读 · 2012年12月31日
国家自然科学基金
3+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员