Youden's index cutoff is a classifier mapping a patient's diagnostic test outcome and available covariate information to a diagnostic category. Typically the cutoff is estimated indirectly by first modeling the conditional distributions of test outcomes given diagnosis and then choosing the optimal cutoff for the estimated distributions. Here we present a Gibbs posterior distribution for direct inference on the cutoff. Our approach makes incorporating prior information about the cutoff much easier compared to existing methods, and does so without specifying probability models for the data, which may be misspecified. The proposed Gibbs posterior distribution is robust with respect to data distributions, is supported by large-sample theory, and performs well in simulations compared to alternative Bayesian and bootstrap-based methods. In addition, two real data sets are examined which illustrate the flexibility of the Gibbs posterior approach and its ability to utilize direct prior information about the cutoff.
翻译:Youden 的索引截断点是一个分类器, 绘制病人诊断测试结果和可得到的诊断类别共变信息。 通常, 截断点通过先对诊断结果的有条件分布进行建模, 然后再选择估计分布的最佳截点来间接估算。 这里我们展示了一个 Gibbbs 的后端分布, 以便直接推断断点。 我们的方法比现有方法更容易地将先前的截断信息纳入信息, 并且没有给出数据概率模型, 这些数据可能会被错误描述。 提议的 Gibs 后端分布在数据分布方面非常可靠, 得到了大样本理论的支持, 并且与其他贝叶斯和靴子捕捉方法相比, 在模拟中表现良好。 此外, 我们考察了两个真实的数据集, 展示了Gibbs 后端方法的灵活性及其直接使用之前的断点信息的能力 。