Recent research on graph neural network (GNN) models successfully applied GNNs to classical graph algorithms and combinatorial optimisation problems. This has numerous benefits, such as allowing applications of algorithms when preconditions are not satisfied, or reusing learned models when sufficient training data is not available or can't be generated. Unfortunately, a key hindrance of these approaches is their lack of explainability, since GNNs are black-box models that cannot be interpreted directly. In this work, we address this limitation by applying existing work on concept-based explanations to GNN models. We introduce concept-bottleneck GNNs, which rely on a modification to the GNN readout mechanism. Using three case studies we demonstrate that: (i) our proposed model is capable of accurately learning concepts and extracting propositional formulas based on the learned concepts for each target class; (ii) our concept-based GNN models achieve comparative performance with state-of-the-art models; (iii) we can derive global graph concepts, without explicitly providing any supervision on graph-level concepts.


翻译:最近对图形神经网络模型的研究成功地将GNNs应用于古典图形算法和组合优化问题。这有许多好处,例如允许在不符合先决条件时应用算法,或者在没有足够的培训数据或无法产生足够的培训数据时重新使用所学模型。不幸的是,这些方法的一个主要障碍是缺乏解释性,因为GNNs是无法直接解释的黑盒模型。在这项工作中,我们通过将关于基于概念的解释的现有工作应用于GNN模型来解决这一局限性。我们引入了概念-bottleneck GNNNs,这依赖于对GNN的读出机制的修改。我们利用三个案例研究表明:(一) 我们提议的模型能够准确学习概念,并提取基于每个目标类别所学概念的推理公式;(二) 我们基于概念的GNNN模型能够与最新模型进行比较性能;(三) 我们可以生成全球图形概念,而没有明确地提供对图形级概念的任何监督。

8
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
【Cell】神经算法推理,Neural algorithmic reasoning
专知会员服务
27+阅读 · 2021年7月16日
【机器推理可解释性】Machine Reasoning Explainability
专知会员服务
34+阅读 · 2020年9月3日
【CIKM2020】神经逻辑推理,Neural Logic Reasoning
专知会员服务
49+阅读 · 2020年8月25日
可解释强化学习,Explainable Reinforcement Learning: A Survey
专知会员服务
127+阅读 · 2020年5月14日
因果图,Causal Graphs,52页ppt
专知会员服务
238+阅读 · 2020年4月19日
可解释AI(XAI)工具集—DrWhy
专知
25+阅读 · 2019年6月4日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
已删除
将门创投
9+阅读 · 2017年7月28日
Arxiv
14+阅读 · 2020年9月1日
VIP会员
相关资讯
可解释AI(XAI)工具集—DrWhy
专知
25+阅读 · 2019年6月4日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
已删除
将门创投
9+阅读 · 2017年7月28日
Top
微信扫码咨询专知VIP会员