We give a new formulation of Turing reducibility in terms of higher modalities, inspired by an embedding of the Turing degrees in the lattice of subtoposes of the effective topos discovered by Hyland. In this definition, higher modalities play a similar role to I/O monads or dialogue trees in allowing a function to receive input from an external oracle. However, in homotopy type theory they have better logical properties than monads: they are compatible with higher types, and each modality corresponds to a reflective subuniverse that under suitable conditions is itself a model of homotopy type theory. We give synthetic proofs of some basic results about Turing reducibility in cubical type theory making use of two axioms of Markov induction and computable choice. Both axioms are variants of axioms already studied in the effective topos. We show they hold in certain reflective subuniverses of cubical assemblies, demonstrate their use in some simple proofs in synthetic computability theory using modalities, and show they are downwards absolute for oracle modalities. These results have been formalised using cubical mode of the Agda proof assistant. We explore some first connections between Turing reducibility and homotopy theory. This includes a synthetic proof that two Turing degrees are equal as soon as they induce isomorphic permutation groups on the natural numbers, making essential use of both Markov induction and the formulation of groups in HoTT as pointed, connected, 1-truncated types. We also give some simple non-topological examples of modalities in cubical assemblies based on these ideas, to illustrate what we expect higher dimensional analogues of the Turing degrees to look like.


翻译:暂无翻译

0
下载
关闭预览

相关内容

【ACL2020】多模态信息抽取,365页ppt
专知会员服务
151+阅读 · 2020年7月6日
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
Arxiv
18+阅读 · 2022年11月21日
Arxiv
69+阅读 · 2022年9月7日
Arxiv
16+阅读 · 2022年5月17日
Arxiv
26+阅读 · 2019年11月24日
VIP会员
相关VIP内容
【ACL2020】多模态信息抽取,365页ppt
专知会员服务
151+阅读 · 2020年7月6日
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
相关论文
Arxiv
18+阅读 · 2022年11月21日
Arxiv
69+阅读 · 2022年9月7日
Arxiv
16+阅读 · 2022年5月17日
Arxiv
26+阅读 · 2019年11月24日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员