In this paper, we design an efficient deep convolutional neural network (CNN) to improve and predict the performance of energy harvesting (EH) short-packet communications in multi-hop cognitive Internet-of-Things (IoT) networks. Specifically, we propose a Sum-EH scheme that allows IoT nodes to harvest energy from either a power beacon or primary transmitters to improve not only packet transmissions but also energy harvesting capabilities. We then build a novel deep CNN framework with feature enhancement-collection blocks based on the proposed Sum-EH scheme to simultaneously estimate the block error rate (BLER) and throughput with high accuracy and low execution time. Simulation results show that the proposed CNN framework achieves almost exactly the BLER and throughput of Sum-EH one, while it considerably reduces computational complexity, suggesting a real-time setting for IoT systems under complex scenarios. Moreover, the designed CNN model achieves the root-mean-square-error (RMSE) of ${1.33\times10^{-2}}$ on the considered dataset, which exhibits the lowest RMSE compared to the deep neural network and state-of-the-art machine learning approaches.
翻译:在本文中,我们设计了一个高效的深层进化神经网络(CNN),以改善和预测多视认知互联网(IoT)网络中能源采集(EH)短包装通信的性能。具体地说,我们提出一个Sum-EH计划,使IoT节点能够从电灯或主发报机中提取能源,不仅改进包装传输,而且改进能源采集能力。然后,我们根据拟议的Sum-EH计划,建立一个新型的深度CNN框架,配有地物增强收集块,以同时估计区块误差率(CLER)和高精确度和低执行时间的吞吐量。模拟结果表明,拟议的CNN框架几乎完全实现了Sum-E 1的BLER和吞吐量,同时大大降低了计算的复杂性,意味着在复杂的情景下为IoT系统设置实时环境。此外,设计的CNN模型在考虑的数据设置上实现了${1.33\time-times 10 ⁇ -2$,用以同时估计区块误差速率和超低执行时间。模拟结果显示与深神经网络相比最低的RMS-stal-stal-net-stal-net-stal-legle。