A general Bayesian framework is introduced for mixture modelling and inference with real-valued time series. At the top level, the state space is partitioned via the choice of a discrete context tree, so that the resulting partition depends on the values of some of the most recent samples. At the bottom level, a different model is associated with each region of the partition. This defines a very rich and flexible class of mixture models, for which we provide algorithms that allow for efficient, exact Bayesian inference. In particular, we show that the maximum a posteriori probability (MAP) model (including the relevant MAP context tree partition) can be precisely identified, along with its exact posterior probability. The utility of this general framework is illustrated in detail when a different autoregressive (AR) model is used in each state-space region, resulting in a mixture-of-AR model class. The performance of the associated algorithmic tools is demonstrated in the problems of model selection and forecasting on both simulated and real-world data, where they are found to provide results as good or better than state-of-the-art methods.
翻译:采用通用的 Bayesian 框架进行混合物建模和推断, 并使用实际估价的时间序列。 在顶层, 通过选择离散上下文树将状态空间分隔, 从而导致的分区取决于最近一些样品的值。 在底层, 不同的模型与分区的每个区域相关。 这定义了一个非常丰富和灵活的混合模型类别, 我们为此提供了允许高效、 精确的 Bayes 推断的算法。 特别是, 我们显示, 后一种概率模型( 包括相关的MAP 上下文树分区) 的极限( MAP) 模型( 包括相关的MAP 上下文树分区) 及其精确的后继概率可以准确确定 。 当每个州空间区域使用不同的自动递增模型时, 当产生一个混合的AR 模型类时, 这个总框架的有用性会得到详细的说明。 相关的算工具的性表现表现表现表现在模型的选择和预测模拟数据和实际世界数据时遇到的问题, 在那里发现, 模型的选择和预测都是好或好于现状的方法。