Anticipating the outbreak of a food crisis is crucial to efficiently allocate emergency relief and reduce human suffering. However, existing food insecurity early warning systems rely on risk measures that are often delayed, outdated, or incomplete. Here, we leverage recent advances in deep learning to extract high-frequency precursors to food crises from the text of a large corpus of news articles about fragile states published between 1980 and 2020. Our text features are causally grounded, interpretable, validated by existing data, and allow us to predict 32% more food crises than existing models up to three months ahead of time at the district level across 15 fragile states. These results could have profound implications on how humanitarian aid gets allocated and open new avenues for machine learning to improve decision making in data-scarce environments.


翻译:预测粮食危机的爆发对于有效分配紧急救济和减少人类痛苦至关重要。然而,现有的粮食不安全早期预警系统依赖于往往被拖延、过时或不完整的风险措施。 在这里,我们利用最近从1980年至2020年发表的大量关于脆弱国家的新闻文章中获取粮食危机高频先质的深层学习进展。 我们的文本特征有因果基础,可以解释,并得到了现有数据的验证,并使我们能够预测在15个脆弱州地区一级比现有模式提前三个月多出32%的粮食危机。这些结果可能会对如何分配人道主义援助和为机器学习开辟新渠道,以改善数据匮乏环境中的决策产生深远影响。

0
下载
关闭预览

相关内容

专知会员服务
95+阅读 · 2021年8月28日
【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
53+阅读 · 2019年9月29日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
计算机 | USENIX Security 2020等国际会议信息5条
Call4Papers
7+阅读 · 2019年4月25日
移动端机器学习资源合集
专知
8+阅读 · 2019年4月21日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
人工智能 | 国际会议信息10条
Call4Papers
5+阅读 · 2018年12月18日
人工智能 | COLT 2019等国际会议信息9条
Call4Papers
6+阅读 · 2018年9月21日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Arxiv
16+阅读 · 2021年7月18日
Arxiv
3+阅读 · 2018年9月12日
Arxiv
6+阅读 · 2018年3月28日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
计算机 | USENIX Security 2020等国际会议信息5条
Call4Papers
7+阅读 · 2019年4月25日
移动端机器学习资源合集
专知
8+阅读 · 2019年4月21日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
人工智能 | 国际会议信息10条
Call4Papers
5+阅读 · 2018年12月18日
人工智能 | COLT 2019等国际会议信息9条
Call4Papers
6+阅读 · 2018年9月21日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Top
微信扫码咨询专知VIP会员