The article describes a system for image recognition using deep convolutional neural networks. Modified network architecture is proposed that focuses on improving convergence and reducing training complexity. The filters in the first layer of the network are constrained to fit the Gabor function. The parameters of Gabor functions are learnable and are updated by standard backpropagation techniques. The system was implemented on Python, tested on several datasets and outperformed the common convolutional networks.
翻译:文章描述了一个使用深层进化神经网络的图像识别系统。 提议修改网络结构, 重点是改进趋同和降低培训复杂性。 网络第一层的过滤器受限制以适应 Gabor 功能。 Gabor 函数的参数是可以学习的, 并通过标准反向推进技术更新。 系统在Python 上实施, 在若干数据集中测试, 并超过了共同的共变网络 。