Similar to the role of Markov decision processes in reinforcement learning, Stochastic Games (SGs) lay the foundation for the study of multi-agent reinforcement learning (MARL) and sequential agent interactions. In this paper, we derive that computing an approximate Markov Perfect Equilibrium (MPE) in a finite-state discounted Stochastic Game within the exponential precision is \textbf{PPAD}-complete. We adopt a function with a polynomially bounded description in the strategy space to convert the MPE computation to a fixed-point problem, even though the stochastic game may demand an exponential number of pure strategies, in the number of states, for each agent. The completeness result follows the reduction of the fixed-point problem to {\sc End of the Line}. Our results indicate that finding an MPE in SGs is highly unlikely to be \textbf{NP}-hard unless \textbf{NP}=\textbf{co-NP}. Our work offers confidence for MARL research to study MPE computation on general-sum SGs and to develop fruitful algorithms as currently on zero-sum SGs.


翻译:与Markov决策程序在强化学习中的作用相似, 沙沙运动会为研究多剂强化学习( MARL) 和相继剂相互作用奠定了基础。 在本文中, 我们得出, 在指数精确度范围内计算一个有限且有价折扣的沙沙游戏中, 大约的Markov 完美平衡( MPE) 是 完成的 。 我们采用了一种功能, 在战略空间中将MPE 计算转换成一个固定点问题时, 使用一个多球体的描述, 尽管 沙沙游戏可能要求每个代理体在数量上有指数数的纯战略。 完整的结果是固定点问题减少至 ~ c 线的结束 。 我们的结果表明, 在SG 中找到 MPE 极不可能是 textbf{ PPAD}- 硬的 。 除非在战略空间中找到 textbf{ NPT{ textb{ textb{ { fco{ { { co- NPT}, 我们的工作为MARL的研究提供了信心, 来研究一般和SG 的计算结果, SG 。

0
下载
关闭预览

相关内容

专知会员服务
14+阅读 · 2021年5月21日
深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
【强化学习资源集合】Awesome Reinforcement Learning
专知会员服务
93+阅读 · 2019年12月23日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
量化金融强化学习论文集合
专知
13+阅读 · 2019年12月18日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
spinningup.openai 强化学习资源完整
CreateAMind
6+阅读 · 2018年12月17日
推荐|深度强化学习聊天机器人(附论文)!
全球人工智能
4+阅读 · 2018年1月30日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Arxiv
0+阅读 · 2021年10月26日
Arxiv
0+阅读 · 2021年10月25日
Arxiv
0+阅读 · 2021年10月23日
Arxiv
0+阅读 · 2021年10月22日
VIP会员
相关资讯
量化金融强化学习论文集合
专知
13+阅读 · 2019年12月18日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
spinningup.openai 强化学习资源完整
CreateAMind
6+阅读 · 2018年12月17日
推荐|深度强化学习聊天机器人(附论文)!
全球人工智能
4+阅读 · 2018年1月30日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Top
微信扫码咨询专知VIP会员