In this paper, we design a resource management scheme to support stateful applications, which will be prevalent in 6G networks. Different from stateless applications, stateful applications require context data while executing computing tasks from user terminals (UTs). Using a multi-tier computing paradigm with servers deployed at the core network, gateways, and base stations to support stateful applications, we aim to optimize long-term resource reservation by jointly minimizing the usage of computing, storage, and communication resources and the cost from reconfiguring resource reservation. The coupling among different resources and the impact of UT mobility create challenges in resource management. To address the challenges, we develop digital twin (DT) empowered network planning with two elements, i.e., multi-resource reservation and resource reservation reconfiguration. First, DTs are designed for collecting UT status data, based on which UTs are grouped according to their mobility patterns. Second, an algorithm is proposed to customize resource reservation for different groups to satisfy their different resource demands. Last, a Meta-learning-based approach is developed to reconfigure resource reservation for balancing the network resource usage and the reconfiguration cost. Simulation results demonstrate that the proposed DT-empowered network planning outperforms benchmark frameworks by using less resources and incurring lower reconfiguration costs.
翻译:在本文中,我们设计了一个资源管理计划,以支持在6G网络中普遍存在的、有色人种的应用。与无国籍应用不同,有色人种的应用需要背景数据,而执行用户终端(UTs)的计算任务则需要背景数据。我们利用在核心网络、网关和基地站部署服务器的多层计算模式,支持有色人种的应用,我们的目标是通过联合尽量减少计算、储存和通信资源的使用以及重新配置资源保留所产生的费用,优化长期资源保留;不同资源之间的结合和UT流动的影响在资源管理方面造成了挑战。为了应对挑战,我们开发了具有电子双对网的授权网络规划,其中有两个要素,即多资源保留和资源保留重组。首先,DTs旨在收集UT状态数据,根据这些数据将UT按其流动性模式分组。第二,提出一种算法,将不同群体的资源保留量定制,以满足其不同的资源需求。最后,正在开发一种基于Met-学习的办法,重新配置资源保留,以平衡网络资源使用和重组成本的调整。模拟结果显示,采用较低的调整基准框架,将低基数的调整资源调整框架。