项目名称: 原位光致发光及发光动力学技术研究中低温SOFC电解质材料的传导机理

项目编号: No.11304036

项目类型: 青年科学基金项目

立项/批准年度: 2014

项目学科: 数理科学和化学

项目作者: 严端廷

作者单位: 东北师范大学

项目金额: 25万元

中文摘要: 本课题针对固体氧化物燃料电池(SOFC)领域中,载流子的局域晶格环境、载流子间相互作用和载流子局域分布状况对载流子迁移快慢的依赖关系缺乏深刻认识的科学问题。根据稀土离子光致发光光谱具有对局域晶格环境变化极其敏感、发光中心的寿命对其周围晶格环境和带电缺陷相互作用极其敏感的特点,拟通过选取Eu3+等稀土离子作探针,部分掺杂取代与其离子半径接近的电解质基质晶格中的离子。采用室温和高温光致发光谱、发光动力学结合变温交流阻抗谱,原位研究Sm3+、Gd3+掺杂CeO2基电解质材料的晶粒电导率浓度淬灭机理和不同稀土离子掺杂CeO2的晶粒电导率增强机理,结合Raman光谱、粉末漫反射谱和X射线光电子能谱研究掺杂CeO2基、ZrO2基和LaGaO3基电解质材料的晶粒电导率、晶界电导率的尺寸效应,并应用上述研究思路研究其它新型电解质材料的导电机理,从而进一步推动SOFC的实用化进程。

中文关键词: 固体氧化物燃料电池;固体电解质;传导机理;光致发光谱;发光动力学

英文摘要: This project is aimed at the poor understanding of the relation between the carrier conduction rate with the local lattice distortion, the interactions between the oxygen vacancies, and the distribution of oxygen vacancy in solid oxide fuel cells(SOFC) fields. Based on the unique optical properties of rare earth ions that the photoluminescence is very sensitive to the local lattice distortion, the lifetime of emission centers is very sensitive to the surrounding lattice environment and the interactions of point defects, the rare earth ions, for instance, Eu3+ ions, which were used as probe ions would be doped into the host of electrolyte substituting the host ions with diameter similar with the rare earth ions. The concentration quenching effects of the bulk conductivity for Sm3+ or Gd3+ doped CeO2 electrolyte, and the bulk conductivity enhance mechanism of different lanthanide ions doped CeO2 would be investigated by in situ photoluminescence spectra, luminescence dynamics and a.c.impedance at room and high temperatures. With the aid of Raman spectra, ultraviolet-visible(UV-vis)diffuse reflectance spectra and X-ray photoelectron spectra (XPS), the size effects of bulk conductivity and grain boundary conductivity for rare earth ions doped CeO2, ZrO2 and LaGaO3 would be investigated.This research strategy would b

英文关键词: solid oxide fuel cells;solid state electrolyte;conduction mechanism;photoluminescence spectra;luminescence dynamics

成为VIP会员查看完整内容
0

相关内容

专知会员服务
43+阅读 · 2021年9月7日
专知会员服务
33+阅读 · 2021年5月7日
电子科大最新《深度半监督学习》综述论文,24页pdf
专知会员服务
90+阅读 · 2021年3月6日
专知会员服务
43+阅读 · 2021年2月8日
专知会员服务
22+阅读 · 2020年9月14日
神经网络的拓扑结构,TOPOLOGY OF DEEP NEURAL NETWORKS
专知会员服务
33+阅读 · 2020年4月15日
机器学习在材料科学中的应用综述,21页pdf
专知会员服务
49+阅读 · 2019年9月24日
MIT科学家制造了量子龙卷风
机器之心
0+阅读 · 2022年1月14日
Science:量子计算机成功创造时间晶体
学术头条
0+阅读 · 2021年11月20日
人工神经网络在材料科学中的研究进展
专知
0+阅读 · 2021年5月7日
这期Nature封面「雪崩」了!
新智元
0+阅读 · 2021年1月16日
【材料课堂】TEM复杂电子衍射花样的标定原理
材料科学与工程
39+阅读 · 2019年4月12日
高分子材料领域的十大院士!
材料科学与工程
19+阅读 · 2018年9月18日
【材料课堂】EBSD晶体学织构基础及数据处理
材料科学与工程
34+阅读 · 2018年7月14日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
1+阅读 · 2022年4月19日
Arxiv
0+阅读 · 2022年4月18日
Sensitivity of sparse codes to image distortions
Arxiv
0+阅读 · 2022年4月15日
小贴士
相关VIP内容
专知会员服务
43+阅读 · 2021年9月7日
专知会员服务
33+阅读 · 2021年5月7日
电子科大最新《深度半监督学习》综述论文,24页pdf
专知会员服务
90+阅读 · 2021年3月6日
专知会员服务
43+阅读 · 2021年2月8日
专知会员服务
22+阅读 · 2020年9月14日
神经网络的拓扑结构,TOPOLOGY OF DEEP NEURAL NETWORKS
专知会员服务
33+阅读 · 2020年4月15日
机器学习在材料科学中的应用综述,21页pdf
专知会员服务
49+阅读 · 2019年9月24日
相关资讯
MIT科学家制造了量子龙卷风
机器之心
0+阅读 · 2022年1月14日
Science:量子计算机成功创造时间晶体
学术头条
0+阅读 · 2021年11月20日
人工神经网络在材料科学中的研究进展
专知
0+阅读 · 2021年5月7日
这期Nature封面「雪崩」了!
新智元
0+阅读 · 2021年1月16日
【材料课堂】TEM复杂电子衍射花样的标定原理
材料科学与工程
39+阅读 · 2019年4月12日
高分子材料领域的十大院士!
材料科学与工程
19+阅读 · 2018年9月18日
【材料课堂】EBSD晶体学织构基础及数据处理
材料科学与工程
34+阅读 · 2018年7月14日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
微信扫码咨询专知VIP会员