Recently, distributed controller architectures have been quickly gaining popularity in Software-Defined Networking (SDN). However, the use of distributed controllers introduces a new and important Request Dispatching (RD) problem with the goal for every SDN switch to properly dispatch their requests among all controllers so as to optimize network performance. This goal can be fulfilled by designing an RD policy to guide distribution of requests at each switch. In this paper, we propose a Multi-Agent Deep Reinforcement Learning (MA-DRL) approach to automatically design RD policies with high adaptability and performance. This is achieved through a new problem formulation in the form of a Multi-Agent Markov Decision Process (MA-MDP), a new adaptive RD policy design and a new MA-DRL algorithm called MA-PPO. Extensive simulation studies show that our MA-DRL technique can effectively train RD policies to significantly outperform man-made policies, model-based policies, as well as RD policies learned via single-agent DRL algorithms.
翻译:最近,分布式控制器结构在软件定义网络(SDN)中迅速获得普及。然而,分布式控制器的使用引入了一个新的重要的请求发送(RD)问题,目标是每个SDN转换器在所有控制器中适当发送请求,以便优化网络性能。可以通过设计一个RD政策来指导每个转换器的请求分配,实现这一目标。在本文件中,我们建议采用多代理深度强化学习(MA-DRL)办法,自动设计适应性强和性能强的RD政策。这是通过一种新的问题配置实现的,其形式是多代理商马尔科夫决策程序(MA-MDP )、新的适应性RDD政策设计和称作MA-PPO的MA-DRL算法。广泛的模拟研究表明,我们的MA-DRL技术能够有效地培训RD政策,以大大超越人为的政策、基于模型的政策以及通过单剂DRL算法学习的RD政策。