We give a construction of classifiers for double negation stable h-propositions in a variety of cubical set models of homotopy type theory and cubical type theory. This is used to give some relative consistency results: classifiers for double negation stable propositions exist in cubical sets whenever they exist in the metatheory; the Dedekind real numbers can be added to homotopy type theory without changing the consistency strength; we construct a model of homotopy type theory with extended Church's thesis, which states that all partial functions with double negation stable domain are computable.
翻译:在一系列单式理论和单式理论的立方体模型中,我们为双重否定的、稳定的和稳定的提出一个分类方法的构建。这被用来提供某种相对一致的结果:只要在元神话中存在双重否定的稳定主张的分类方法就存在于立方体中;Dedecind真实数字可以在不改变一致性强度的情况下添加到同式理论中;我们用扩展的教会理论来构建一个单式理论模型,其中指出具有双重否定稳定域的所有部分功能都是可比较的。