In this paper we study the uncertainty principle (UP) connecting a function over a finite field and its Mattson-Solomon polynomial, which is a kind of Fourier transform in positive characteristic. Three versions of the UP over finite fields are studied, in connection with the asymptotic theory of cyclic codes. We first show that no finite field satisfies the strong version of UP, introduced recently by Evra, Kowalsky, Lubotzky, 2017. A refinement of the weak version is given, by using the asymptotic Plotkin bound. A naive version, which is the direct analogue over finite fields of the Donoho-Stark bound over the complex numbers, is proved by using the BCH bound. It is strong enough to show that there exist sequences of cyclic codes of length $n$, arbitrary rate, and minimum distance $\Omega(n^\alpha)$ for all $0<\alpha<1/2$. Finally, a connection with Ramsey Theory is pointed out.


翻译:在本文中,我们研究了不确定性原则(UP),该原则将有限字段的功能与其马特森-索洛蒙多元海洋学相联系,这是一种富丽雅的正性变异,结合循环编码的零时论理论,研究了三个版本的优于有限字段。我们首先表明,没有一个限定字段能够满足最近Evra、Kowalsky、Lubotzky, 2017年引进的强值UP的版本。通过使用无药方图盘,对薄弱版本进行了改进。一个天真版本,即对多诺霍-Stark的有限字段进行直接比对复杂数字的比喻,通过使用BCH约束来证明,它足够强大,足以表明存在长度为$、任意率和最低距离为$Omega(n ⁇ alpha)$ <1/2美元(n ⁇ alpha)的周期代码序列。最后指出,与Ramsey Theory的连接点是。

0
下载
关闭预览

相关内容

迄今为止,产品设计师最友好的交互动画软件。

专知会员服务
50+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
【泡泡一分钟】ProbFlow:联合光流和不确定性估计
泡泡机器人SLAM
3+阅读 · 2018年10月26日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
4+阅读 · 2018年3月14日
VIP会员
相关VIP内容
专知会员服务
50+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
【泡泡一分钟】ProbFlow:联合光流和不确定性估计
泡泡机器人SLAM
3+阅读 · 2018年10月26日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员