Hyperparameter tuning is critical to the success of federated learning applications. Unfortunately, appropriately selecting hyperparameters is challenging in federated networks. Issues of scale, privacy, and heterogeneity introduce noise in the tuning process and make it difficult to evaluate the performance of various hyperparameters. In this work, we perform the first systematic study on the effect of noisy evaluation in federated hyperparameter tuning. We first identify and rigorously explore key sources of noise, including client subsampling, data and systems heterogeneity, and data privacy. Surprisingly, our results indicate that even small amounts of noise can significantly impact tuning methods-reducing the performance of state-of-the-art approaches to that of naive baselines. To address noisy evaluation in such scenarios, we propose a simple and effective approach that leverages public proxy data to boost the evaluation signal. Our work establishes general challenges, baselines, and best practices for future work in federated hyperparameter tuning.
翻译:超强参数调试对于联邦学习应用的成功至关重要。 不幸的是,在联邦网络中,适当选择超强参数具有挑战性。 规模、隐私和异质性的问题在调试过程中引入噪音,使得难以评估各种超强参数的性能。 在这项工作中,我们首次对联邦超常参数调试中的噪音评估影响进行了系统研究。我们首先确定并严格探索了关键噪音来源,包括客户子取样、数据和系统差异性和数据隐私。令人惊讶的是,我们的结果显示,即使是少量的噪音也会对调整方法产生重大影响,降低最先进的天性基线方法的性能。为了应对这些情景中的噪音评估,我们提出了一种简单而有效的方法,利用公共代用数据来增强评价信号。我们的工作为今后美化超强参数调工作确定了一般挑战、基线和最佳做法。