Recently, many studies have shed light on the high adaptivity of deep neural network methods in nonparametric regression models, and their superior performance has been established for various function classes. Motivated by this development, we study a deep neural network method to estimate the drift coefficient of a multi-dimensional diffusion process from discrete observations. We derive generalization error bounds for least squares estimates based on deep neural networks and show that they achieve the minimax rate of convergence up to a logarithmic factor when the drift function has a compositional structure.
翻译:暂无翻译