Quantum computers can be used for supervised learning by treating parametrised quantum circuits as models that map data inputs to predictions. While a lot of work has been done to investigate practical implications of this approach, many important theoretical properties of these models remain unknown. Here we investigate how the strategy with which data is encoded into the model influences the expressive power of parametrised quantum circuits as function approximators. We show that one can naturally write a quantum model as a partial Fourier series in the data, where the accessible frequencies are determined by the nature of the data encoding gates in the circuit. By repeating simple data encoding gates multiple times, quantum models can access increasingly rich frequency spectra. We show that there exist quantum models which can realise all possible sets of Fourier coefficients, and therefore, if the accessible frequency spectrum is asymptotically rich enough, such models are universal function approximators.
翻译:量子计算机可以通过将准粒子电路作为绘制预测数据输入的模型来监督学习。 虽然已经做了大量工作来调查这种方法的实际影响,但这些模型的许多重要的理论属性仍然未知。 我们在这里调查数据编码成模型的战略如何影响作为功能接近器的半粒子电路的表达力。 我们显示,在数据中,可以自然地将量子模型写成一个部分的四倍系列,在这些数据中,可访问频率是由电路数据编码门的性质决定的。通过重复简单的数据编码门,量子模型可以多次访问越来越丰富的频率光谱。 我们显示,存在能够实现所有可能四倍系数组合的量子模型,因此,如果可获取的频谱具有同样丰富的功能,这种模型是通用功能辅助器。