Generating diverse populations of high quality solutions has gained interest as a promising extension to the traditional optimization tasks. We contribute to this line of research by studying evolutionary diversity optimization for two of the most prominent permutation problems, namely the Traveling Salesperson Problem (TSP) and Quadratic Assignment Problem (QAP). We explore the worst-case performance of a simple mutation-only evolutionary algorithm with different mutation operators, using an established diversity measure. Theoretical results show most mutation operators for both problems ensure production of maximally diverse populations of sufficiently small size within cubic expected run-time. We perform experiments on QAPLIB instances in unconstrained and constrained settings, and reveal much more optimistic practical performances. Our results should serve as a baseline for future studies.
翻译:作为传统优化任务的有希望的延伸,产生不同群体高质量解决方案已引起人们的兴趣,作为传统优化任务的一个有希望的延伸,我们通过研究两个最突出的变异问题,即“旅行销售人问题”和“夸德里亚分配问题”,为这一研究线作出贡献。我们探索了一种简单而突变的进化算法的最坏的性能,该算法与不同的变异操作员使用既定的多样化计量法。理论结果显示,这两个问题的操作员最突变,这确保了在预期的运行时段内产生规模足够小、规模极小的多样化人口。我们在不受限制和受限制的环境中对QAPLIB实例进行了实验,并展示了更乐观的实际表现。我们的结果应当作为未来研究的基准。