Owing to the exceptional performance of Large Language Models (LLMs) in Natural Language Processing (NLP) tasks, LLM-based NLP software has rapidly gained traction across various domains, such as financial analysis and content moderation. However, these applications frequently exhibit robustness deficiencies, where slight perturbations in input (prompt+example) may lead to erroneous outputs. Current robustness testing methods face two main limitations: (1) low testing effectiveness, limiting the applicability of LLM-based software in safety-critical scenarios, and (2) insufficient naturalness of test cases, reducing the practical value of testing outcomes. To address these issues, this paper proposes ABFS, a straightforward yet effective automated testing method that, for the first time, treats the input prompts and examples as a unified whole for robustness testing. Specifically, ABFS formulates the testing process as a combinatorial optimization problem, employing Best-First Search to identify successful test cases within the perturbation space and designing a novel Adaptive control strategy to enhance test case naturalness. We evaluate the robustness testing performance of ABFS on three datasets across five threat models. On Llama2-13b, the traditional StressTest achieves only a 13.273% success rate, while ABFS attains a success rate of 98.064%, supporting a more comprehensive robustness assessment before software deployment. Compared to baseline methods, ABFS introduces fewer modifications to the original input and consistently generates test cases with superior naturalness. Furthermore, test cases generated by ABFS exhibit stronger transferability and higher testing efficiency, significantly reducing testing costs.
翻译:暂无翻译